

Tween Bridge Solar Farm

Environmental Statement
Appendix 15.1: Agricultural Land Classification

Planning Act 2008 Infrastructure Planning (Applications: Prescribed Forms and Procedure) Regulations 2009

APFP Regulation 5(2)(a)

Document Reference: 6.3.15.1

August 2025

Revision 1

AGRICULTURAL LAND CLASSIFICATION TWEEN BRIDGE

CLIENT: PEGASUS

Project: Tween Bridge

DATE: 14TH JULY 2025 - ISSUE 3
ISSUED BY: JAMES FULTON MRICS FAAV

CONTENTS

- 1. EXECUTIVE SUMMARY
- 2. Introduction
- 3. Published information
- 4. CLIMATE
- 5. STONINESS
- 6. Gradient
- 7. Soils

INTERACTIVE FACTORS

- 8. Wetness
- 9. Droughtiness
- 10. AGRICULTURAL LAND CLASSIFICATION

APPENDIX 1 – DETAILS OF THE AUTHORS EXPERIENCE

APPENDIX 2 – PLAN OF ORDER LIMITS WITH SAMPLING POINTS

APPENDIX 3 – AGRO-CLIMATIC DATA

APPENDIX 4 – SURVEY DATA

APPENDIX 5 – DESCRIPTION OF AGRICULTURAL LAND CLASSIFICATION GRADES

APPENDIX 6 – MAP OF LAND GRADING

1. EXECUTIVE SUMMARY

- 1.1 This report assesses the Agricultural Land Classification (ALC) grading of 1848.2 Ha, of agricultural land between Thorne and Crowle in Lincolnshire and South Yorkshire.
- 1.2 The limiting factor found to be soil wetness, a combination of the climatic regime, soil water regime and texture of the top 25cm of the soil on the heavier soils and droughtiness on the sandy soils.
- 1.3 The land is graded as follows:

Grade 1: 48.3 Ha

Grade 2: 184.4 Ha

Grade 3a: 586.5 Ha

Grade 3b: 1029 Ha

2. Introduction

- 2.1 Amet Property Ltd have been instructed by Pegasus Planning to produce an Agricultural Land Classification (ALC) report on a 1848.2-hectare Order Limits on land between Thorne and Crowle in South Yorkshire and Lincolnshire.
- 2.2 The report's author is James Fulton BSc (Hons) MRICS FAAV who has worked as a chartered surveyor, agricultural valuer, and agricultural consultant since 2004, has a degree in agriculture which included modules on soils and over 10 years' experience in advising farmers on soil structure and cultivation methods and in producing agricultural land classification reports. Additional information on authors experience is found at **appendix 1**.
- 2.3 The report is based on a visit conducted by James Fulton and 3 assistant surveyors across a total of 12 days between May and September 2023. During visits weather ranged from sunny to overcast with showers. Soil conditions were moist throughout the soil horizons except for a period in June and July where soils became very dry and survey work ceased and continued after a period of rain in late July. Additional survey work extending to 6 man days in June 2025 was carried out to extend the survey boundary during which weather was sunny and soils dry with some moisture still present at depth and moisture throughout in areas that had been irrigated.
- During the inspections 9 trial pits were dug to a depth of 120cm. In addition to the trial pits an auger was used to take approximately one sample per hectare on the proposed development Order Limits to a depth of 120cm with smaller trial pits at some of these locations to confirm soil structure and colour where it was not clear from the auger samples. A plan of auger points and trial pit locations can be found at *appendix 2*. The trial pit locations were selected as they were representative of the soils found on Order Limits. Where subsoils were inspected with a spade, descriptions of structure have been recorded based on the soil survey field handbook¹; where an auger has been used the structure is described as good, moderate or poor based on figure 9,10 and 11 in the MAFF² guidance. Colours are described using Munsell Colours³.
- 2.5 The Order Limits is described in literature as possibly calcareous in places and so hydrochloric acid was used to test in field for a reaction that would indicate calcareous soils.

¹ Hodgson, JM (1997) Soil Survey Field Handbook

² MAFF (1988) - Agricultural Land Classification of England and Wales. Revised guidelines and criteria for grading the quality of agricultural land. MAFF Publications

³ Munsell Color (2009) Munsell Soil Color Charts

- 2.6 The surveyed area extends to 1848.2Ha of largely arable land. The land is essentially flat with the survey points ranging in elevation from 0m to 5m above sea level.
- 2.7 Further information has been obtained from the MAGIC website, the Soil Survey of England and Wales, the British Geological Survey, the Meteorological Office and 1:250,000 series Agricultural Land Classification maps.
- 2.8 The collected information has been judged against the Ministry of Agriculture Fisheries and Food Agricultural Land Classification of England and Wales revised guidelines and criteria for grading the quality of agricultural land.
- 2.9 The principal factors influencing agricultural production are climate, site and soil and the interaction between them MAFF (1988) & Natural England (2012)⁴.
- 2.10 The report is prepared and formatted considering the latest BSSS guidance⁵.

3. Published Information

3.1 The British Geological Survey 1:50,000 scale map shows various bedrock geology and superficial deposits across the Order Limits.

LAND TO THE EAST OF THORNE

- 3.1.1 The land to the west of the block on both the north and south of the Stainforth and Keadby Canal, shows bedrock geology to be Sherwood Sandstone Group Sandstone with Superficial deposits of Hemingbrough Glaciolacustrine Formation Clay, silty.
- 3.1.2 The bedrock along the north border of the canal, and the strip to the east running south from the canal, is Chester Formation Sandstone, Pebbly (gravelly) (with Superficial deposits of variously Peat Peat and Sutton Sand Formation Sand).

⁴ MAFF (1988) - Agricultural Land Classification of England and Wales. Revised guidelines and criteria for grading the quality of agricultural land. MAFF Publications

Natural England (2012) - Technical Information Note 049 - Agricultural Land Classification: protecting the best and most versatile agricultural land, Second Edition

⁵ BSSS (2022) Working with Soil Guidance Note on Assessing Agricultural Land Classification Surveys in England and Wales

- 3.1.3 The land to the north of the canal at the very east of the block is the same Sherwood Sandstone Group Sandstone, with Superficial deposits of Warp Clay and silt.
- 3.1.4 Land to the south of the canal at the southeast of the block, is recorded as having bedrock geology of Chester Formation Sandstone, pebbly (gravelly), with Superficial deposits of Alluvium Clay, silt, sand, and gravel.

LAND TO THE EAST OF HATFIELD

- 3.1.5 The land to the west of the block, both north and south of the M180, has bedrock geology of Chester Formation Sandstone, pebbly (gravelly) with Superficial deposits of Glaciofluvial Deposits, Devensian Sand and gravel.
- 3.1.6 To the south of this area the bedrock recorded as Chester Formation Sandstone, pebbly (gravelly) continues, with Superficial deposits of Sutton Sand Formation Sand. This is also found to the south of Sandtoft road and to the area at the east part of the block. Within these areas of the block, there are also patches recorded with Superficial deposits of Peat Peat.
- 3.1.7 The rest of the block to both the north and south of the M180 is recorded as having bedrock geology of Chester Formation Sandstone, pebbly (gravelly) with Superficial deposits of Alluvium Clay, silt, sand, and gravel.

LAND TO THE SOUTH OF CROWLE

- 3.1.8 The block is largely covered by bedrock geology of Mercia Mudstone Group Mudstone with Superficial Deposits of Sutton Sand Formation Sand.
- 3.1.9 The north and west of the block has bedrock geology of Mercia Mudstone Group Mudstone with Superficial Deposits of Peat Peat.
- 3.1.10 There is a small area in the middle of the block which has Mercia Mudstone Group Mudstone with Superficial deposits of Alluvium Clay, silt, sand, sand, and gravel.

LAND TO THE WEST OF CROWLE

3.1.11 The land to the southeast of the block has the bedrock geology of Mercia Mudstone Group – Mudstone with Superficial Deposits of Alluvium – Clay, silt, sand, and gravel.

- 3.1.12 The land to the northwest of the block has the bedrock geology of Mercia Mudstone Group Mudstone with Superficial Deposits of Warp Clay and silt.
- 3.1.13 The middle of the block has an area of Mercia Mudstone Group Mudstone with Superficial Deposits of Peat Peat.
- 3.2 The soils on the Order Limits are identified as being several different Associations.

LAND TO THE EAST OF THORNE

- 3.2.1 The soils to the west of the block on both the north and south of the Stainforth and Keadby Canal are 712i FOGGATHORPE 2 Association, slowly permeable seasonally waterlogged stoneless clayey and fine loamy over clayey soils.
- 3.2.2 The area surrounding the canal (both north and south) and towards the southwest of the block encompassing Clay Bank Farm has soils of 532b ROMNEY Association, deep stoneless permeable calcareous coarse and fine silty soils.
- 3.2.3 The soils to the north of the canal and the east of the block are 811b CONWAY Association, deep stoneless fine silty and clayey soils variably affected by groundwater.

LAND TO THE EAST OF HATFIELD

- 3.2.4 The soils to the south of the M180 are largely 821b BLACKWOOD Association, deep permeable sandy and coarse loamy soils.
- 3.2.5 The soils south of the M180 to the east of the block are 712i FOGGATHORPE 2 Association, slowly permeable seasonally waterlogged stoneless clayey and fine loamy over clayey soils. This soil also covers the south of the M180 to Low Bank Drain.
- 3.2.6 The soils to the north of the M180 is nearly completely 712i FOGGATHORPE 2 Association, slowly permeable seasonally waterlogged stoneless clayey and fine loamy over clayey soils.
- 3.2.7 The east area to the north of the M180 has soils present in the southeast of the block of 821b BLACKWOOD Association, deep permeable sandy and coarse loamy soils.

LAND TO THE SOUTH OF CROWLE

- 3.2.8 The soils to the southeast of the block are 821b BLACKWOOD Association, deep permeable sandy and coarse loamy soils.
- 3.2.9 The soils to the northwest of the block are 861b Isleham 2 Association, deep permeable sandy and peaty soils affected by groundwater.

LAND TO THE WEST OF CROWLE

- 3.2.10 The soils to the southeast of the block are 813d FLADBURY 3 Association, Stoneless clayey, fine silty and fine loamy soils affected by groundwater.
- 3.2.11 The soils to the northwest of the block are 532b ROMNEY Association, Deep stoneless permeable calcareous coarse and fine silty soils.
- 3.3 The 1:250,000 series Agricultural Land Classification maps show the land to be Grade 2 very good and Grade 3 good to moderate. These plans are of strictly limited value, using an out-of-date methodology at a very small scale (low detail) level of survey. Further information on the limits of their use can be found in TIN049.
- 3.4 None of the land subject to this report has been previously surveyed using the Post 1988 Agricultural Land Classification methodology. However, an area to the southwest of Thorne and others around Crowle have been surveyed with areas reported to be Grade 2, Grade 3a and Grade 3b.

4. CLIMATE

- 4.1 Climate has a major, and in places overriding, influence on land quality affecting both the range of potential agricultural uses and the cost and level of production.
- 4.2 There is published agro-climatic data for England and Wales provided by the Meteorological Office, such data for the subject Order Limits is listed in the table below.

Agro-Climatic Data - Full details can be found at appendix 3

Grid Reference	473129,413766
Altitude (ALT)	3
Average Annual Rainfall (AAR)	600
Accumulated Temperature - Jan to June (ATO)	1414
Duration of Field Capacity (FCD)	125
Moisture Deficit Wheat	120
Moisture Deficit Potatoes	115

- 4.3 The Order Limits is quite spread out and so the agro-climatic data was calculated for several different points around the Order Limits. While there was some variation the number of field capacity days was always below 126 and the variation in MDW and MDP was not significant and so a single data set (above) has been used throughout.
- 4.4 The main parameters used in assessing the climatic limitation are average annual rainfall (AAR), as a measure of overall wetness; and accumulated temperature (ATO), as a measure of the relative warmth of a locality.
- 4.5 The AAR and ATO provide no climatic limitation to grade.
- 4.6 The Order Limits is shown to be in Flood zone 3 areas with greater than 1 in 100 annual chance of flooding. Despite this there was no evidence of flooding seen during the visits and it is considered that flooding will not result in a limitation to land grade.

5. STONINESS

5.1 The Order Limit is almost entirely stoneless. Where any stones are recorded this is a maximum of 5% very small and small rounded or subrounded hard stones. Stoniness does not limit the land grade.

6. GRADIENT AND MICRORELIEF

6.1 The land is essentially flat with survey points varying but no more than 5 metres across the whole Order Limits. There is no gradient or microrelief limitation to land grade.

7. Soils

- 7.1 The soils found largely follow the expectations set by the national soils map. Full information on the sample points along with trial pit descriptions and photographs and lab test results can be found at appendix 4.
- 7.2 There are several survey points with topsoil recorded as Loamy medium sand and a very small number recorded as medium sand. These areas are limited to grade 2 and grade 3b respectively due to the texture of the topsoil.
- 7.3 Sample points were tested with HCl to see if there was a reaction that would indicate calcareous soils. Some soils reacted very slightly with an audible but not visible reaction and occasional sample points reacted with a slight visual reaction. A lab test should a CA CO equivalent of 2.7% from the location that reacted the most to an HCl test. Following discussions with the farmer this appears to be the location of a historic lime dump and it was confirmed that all the land benefits from regular applications of lime. It is therefore considered that none of these locations are naturally calcareous.

INTERACTIVE FACTORS

8. WETNESS

8.1 An assessment of the wetness class of each sample point was made based on the flow chart at Figure 6 in the MAFF guidance and the tables at Figure 7 and Figure and Table 13.

Wetness class Assessment

Depth to gley	Depth to SPL	Coarse subsoiil	Wetness Class
No gley	No SPL	N/A	I
40-70	No SPL	Yes	I
40-70	No SPL	No	I
<40	No SPL	Yes	I
<40	No SPL	No	II
40-70	>42	N/A	II
40-70	<42	N/A	III
<40	>61	N/A	II
<40	<61	N/A	III

- The wetness class and topsoil texture were then assessed against Table 6 of the MAFF guidance to determine the ALC grade according to wetness.
- 8.3 The assessment resulted in the Order Limits being broken down into areas of wetness class I, wetness class II and wetness class III. Each of these areas was then assessed against table 6 which resulted in a limit that ranged from grade 1 to grade 3b. The wetness assessment can be found at *appendix 4*.

9. DROUGHTINESS

9.1 Droughtiness limits are defined in terms of moisture balance for wheat and potatoes using the formula:

and

MB (Potatoes) = AP (Potatoes) - MD (Potatoes)

Where:

MB = Moisture Balance

AP = Crop Adjusted available water capacity

MD = Moisture deficit

9.2 Moisture deficit for wheat and potatoes can be found in the agroclimatic data and are as follows:

- 9.3 Crop adjusted available water is calculated by reference to the total available water and easily available water which is calculated by reference to soil texture and structural condition and the stone content.
- 9.4 The moisture balance was calculated for the trial pit locations and locations where droughtiness was likely to be a potential limiting factor. This assessment can be found at **appendix 4**.
- 9.5 Where there was little or no wetness limitation, droughtiness was often found to be the most limiting factor with the areas where the limitation was most pronounced being areas with a loamy sand or sand topsoil over a loamy sand or sand subsoil.

10. AGRICULTURAL LAND CLASSIFICATION

- 10.1 The Agricultural Land Classification provides a framework for classifying land according to which its physical or chemical characteristics impose long-term limitations on agricultural use. The limitations can operate in one or more of four principle ways: they may affect the range of crops that can be grown, the level of yield, the consistency of yield and the cost of obtaining it.
- 10.2 The principle physical factors influencing agricultural production are climate, Order Limits and soil and the interactions between them which together form the basis for classifying land into one of 5 grades; grade 1 being of excellent quality and grade 5 being land of very poor quality. Grade 3 land, which constitutes approximately half of all agricultural land in the United Kingdom is divided into 2 subgrades 3a and 3b. A full definition of all of the grades can be found at *appendix 5*.
- 10.3 This assessment sets out that where the soils are clayey the limiting factor is wetness and where they are sandy the limiting factor is droughtiness.
- 10.4 The breakdown of land by classification is:

Grade 1: 48.3 Ha

Grade 2: 184.4 Ha

Grade 3a: 586.5 Ha

Grade 3b: 1029 Ha

10.5 A plan of the land grading can be found at **appendix 6**.

Appendix 1 – Details of the Authors Experience

James Fulton

Professional Education and Qualifications

BSc (Hons) Agriculture, University of Nottingham (2004)

Member of the Royal Institution of Chartered Surveyors (MRICS) (2008)

Fellow of the Central Association of Agricultural Valuers (FAAV) (2009)

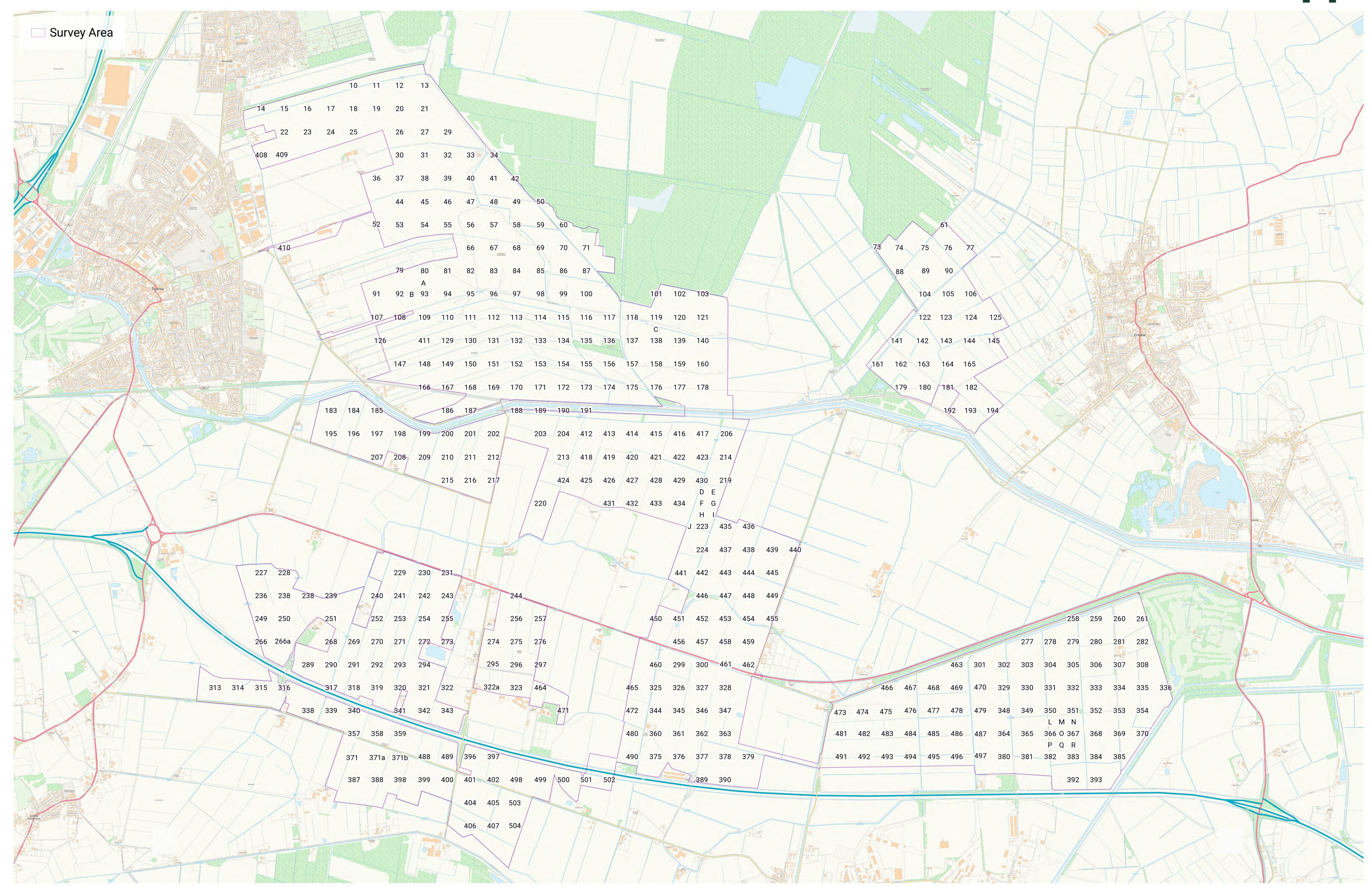
Relevant Work Experience

While working for a regional firm from 2004 until 2016 as part of my work I provided advice to farmers on soils, cultivation techniques and cropping and was involved in field trials which assessed cropping and cultivation techniques and how they impacted soil structure. At the same time I worked alongside an experienced surveyor who produced Agricultural Land Classification reports and I received training in field survey techniques and the ALC process to the point where I was able to produce ALC reports.

In 2016 I left my employer and formed Amet Property Ltd providing development consultancy and other rural practice surveying services. Of all of the services that we provide Agricultural Land Classification reports is the single largest area of work accounting for approximately 70% of all of my working time.

While I am not a member of the BSSS I meet the minimum competencies set out by the BSSS in Document 1 Foundation skills in field soil investigation, description and interpretation and Document 2 Agricultural Land Classification (England and Wales)

Professional Standards


As a member of the Royal Institution of Chartered Surveyors and Fellow of the Central Association of Agricultural Valuers I am bound by their professional standards and am only able to carry out work where I am suitably qualified and experienced to do so. Due to the formal and practical training that I have received I am able to competently produce Agricultural Land Classification reports.

Assistant Surveyors

All assistant surveyors have completed the BSSS working with soil course and have been trained to meet the requirements of BSSS Document 1 Foundation skills in field soil investigation, description, and interpretation.

Appendix 2 - Map of Survey Points

Appendix 3 – Climatic Data

Site Details: Tween Bridge

Grid reference (centre of site): 473129,413766

Altitude: Mean 2.56 AOD

Climatic data from surrounding locations:

47004100	4	580	0.1	290	1415	2379	117	111	120
47004150	4	596	0	290	1413	2377	116	110	123
47504100	4	585	0.3	300	1414	2380	114	108	122
47504150	4	610	0	260	1411	2377	124	120	128

Altitude Adjusted

						Proximity
Grid Reference	AAR	ATO	FCD	MDW	MDP	Adjustment
47004100	579.86	1416.64	119.98	117.16	111.21	10.81%
47004150	596.00	1414.64	123.00	116.15	110.20	22.92%
47504100	584.57	1415.64	121.94	114.18	108.24	14.66%
47504150	610.00	1412.64	128.00	124.15	120.20	51.61%

Appendix 4a - Survey Point Assessment

Appendix 4	a - Survey	Point As	sessment																				B 1.:			
		Topsoil					Upper Sub	soil					Lower Subs	oil.					Depth to	ess Asses	ment Wetness	Grade limit by	Droughtiness A MB	Assessment MB	Grade limit by	Grade by most limiting
Sample No	Altitude	Depth	Texture	Colour	Stoniness		Depth	Texture	Colour	Stoniness	Mottles	Structure	Depth	Texture	Colour	Stoniness	Mottles	Structure	Glev	SPL	Class	Wetness	Wheat	Potato	Droughtiness	factor
10	3	0-50	HCL	10YR 4/2	5001111033	Mothes	50-80+	С	10YR 5/1	5001111033	MO	P	Бери	rentare	coloui	5.01	Mottics	Structure	40	40	III	3b	18.86	0.68	2	3b
11	2	0-40	HCL	10YR 4/2			40-60	SCL	7.5YR 5/3		MO	М	60-120	С	2.5Y 5/1		MO	Р	40	60	П	3a	18.86	-0.32	2	3a
12	3	0-40	HCL	10YR 4/2		FO	40-70+	С	10YR 5/1		MO	Р			,				40	40	III	3b	13.86	-4.32	2	3b
13	2	0-35	MCL	10YR 4/2		FO	35-45	SC	10YR 6/1		MO	P	45-80	mS	7.5YR 5/2		MOB	M	35	35	Ш	3a	-5.64	-21.82	3a	3a
14	2	0-30	MCL	10YR 4/2			30-80+	SC	7.5YR 5/3		MO	P							30	30	III	3a	15.86	-9.32	2	3a
15	2	0-30	MCL	10YR 4/2			30-80+	SCL	7.5YR 5/2		MO	M							30		II	2	33.86	-1.32	2	2
16	2	0-40	HCL	10YR 4/2		FO	40-70+	С	10YR 5/1		MO	Р							40	40	III	3b	13.86	-4.32	2	3b
17	5	0-35	SCL	10YR 4/2			35-70	mS	10YR 5/3		COB	M	70-90+	C	10YR 4/1		MO	Р	35		1	1	-5.14	-31.32	3b	3b
18	2	0-35	HCL	10YR 4/2		FO	35-60	SC	2.5Y 5/1		MOB	P	60-120	C	2.5Y 5/1		MO	Р	35	35	Ш	3b	12.36	-6.82	2	3b
19	2	0-35	HCL	10YR 4/2		FO	35-60	SC	2.5Y 5/1		MOB	Р	60-120	С	2.5Y 5/1		MO	Р	35	35	Ш	3b	12.36	-6.82	2	3b
20	2	0-40	MCL	10YR 4/2			40-60	SCL	2.5YR 5/4		CO	M P	60-120	C	5YR 4/4		MO MOB	M	25	60	II III	2	24.86	2.68	2	2
21 22	3 2	0-35 0-40	HCL HCL	10YR 4/2 10YR 4/2		FO	35-80 40-70+	SC C	2.5Y 6/1 10YR 5/1		MO MO	P	80-120	С	2.5Y 5/1		IVIOB	Р	35 40	35 40	111	3b 3b	14.36 13.86	-6.82 -4.32	2	3b 3b
22	2	0-40	HCL	10YR 4/2		FO	40-70+	C	10YR 5/1 10YR 5/1		MO	P							40	40	111	3b	13.86	-4.32 -4.32	2	3b
24	2	0-40	HCL	10YR 4/2		FO	35-70+	C	10YR 5/1		MO	P							35	35	111	3b	11.36	-6.82	2	3b
25	2	0-35	HCL	101R 4/2		FO	35-70+	c	10YR 5/1		MO	P							35	35	111	3b	11.36	-6.82	2	3b
26	2	0-35	HCL	10YR 4/2		FO	35-60	SCL	7.5YR 5/2		MO	M	60-120	mS	5YR 5/4			М	35	55	1	2	5.36	-7.82	2	2
27	2	0-40	HCL	10YR 4/2		FO	40-70+	C	10YR 5/1		MO	P			,				40	40	III	3b	13.86	-4.32	2	3b
28	2	0-35	HCL	10YR 4/2		FO	35-70+	C	10YR 5/1		MO	Р							35	35	III	3b	11.36	-6.82	2	3b
29	2	0-40	HCL	10YR 4/2		FO	40-70+	С	10YR 5/1		MO	Р							40	40	III	3b	13.86	-4.32	2	3b
30	2	0-35	SCL	10YR 5/1			35-70	SCL	10YR 5/1		MOB	P	70-120	mSL	10YR 5/3		MO	M	35	35	III	3a	29.86	-10.32	3a	3a
31	2	0-35	HCL	10YR 4/1			35-70	SCL	10YR 5/2		MOB	P	70-120	LmS	10YR 6/1		MO	M	35	35	III	3b	8.36	-6.82	2	3b
32	2	0-35	SCL	10YR 4/1			35-70	SCL	10YR 5/3		MOB	P	70-120	mSL	10YR 5/1		MO	M	35	35	Ш	3a	29.86	-10.32	3a	3a
33	2	0-35	HCL	10YR 5/1		FO	35-70	С	10YR 5/1		MOB	P	70-120	LmS	10YR 5/1		MO	M	35	35	Ш	3b	6.36	-6.82	2	3b
34	2	0-40	mSZL	10YR 3/2			40-70	SCL	10YR 6/1		MO	M	70-80	mS	7.5YR 5/6		MO	M	40		Ш	1	-4.14	5.68	3a	3a
36	2	0-40	HCL	10YR 4/2		FO	40-120	C	10YR 6/1		MO	P							40	40	III	3b	13.86	-4.32	2	3b
37 38	2	0-40 0-40	HCL HCL	10YR 3/1 10YR 3/1			40-120 40-120	LmS LmS	10YR 6/2		MO MO	M M							40 40		!	2	2.86 2.86	-16.32 -16.32	3a 3a	3a 3a
39	2	0-40	HCL	101R 3/1 10YR 4/1			35-120	mS	10YR 6/2 10YR 6/3		MO	M							40		- 1	2	-11.64	-16.32	3a	3a
40	2	0-33	HCL	10YR 4/1		FO	40-50	C	10YR 5/1		MO	P	50-120	LmS	10YR 6/3		MO	М	40	40	iii	3b	6.86	-12.32	3a	3b
41	2	0-30	mSZL	10YR 3/2			30-50	CL	10YR 3/2			MAB +CPL	50-120	LmS	10YR 6/1		MO	C Platey	50		1	1	-37.14	-32.32	3b	3b
42	2	0-50	MSZL	10YR 3/1			50-85	SC	10YR 3/1		MO	М	85-120	LmS	10YR 3/2		MO	M			i	1	30.86	9.68	2	2
43	2	0-35	С	10YR 4/2		FO	35-120	С	10YR 6/1		MO	Р							35	35	III	3b	7.86	-10.32	3a	3b
44	1	0-40	HCL	10YR 3/1			40-120	LmS	10YR 6/2		MO	M							40		1	2	2.86	-16.32	3a	3a
45	2	0-35	HCL	10YR 4/1		FO	35-60	C	10YR 6/1		MO	P	60-120	mS	10YR 6/2		MO	M	35	35	III	3b	-0.64	-12.82	3a	3b
46	2	0-30	HCL	10YR 4/2		FO	30-80	C	10YR 5/1		MO	P	80-120	mSL	5YR 5/3		MO	M	30	30	III	3b	24.86	-9.32	2	3b
47	2	0-45	mSL	10YR 4/2		FO	45-80	LmS	7.5YR 5/3		MO	M	80-120	mS	5YR 4/4		FO	M	45		1	1	-1.14	-16.32	3a	3a
48	1	0-35	mSZL	10YR 3/2			35-120	SC	10YR 5/2		MO	P		_				_	35	35	III	2	21.86	-3.32	2	2
49 50	2	0-35	mSZL	10YR 3/2			35-50	SC	10YR 5/1		MO FB	M	50-80	C	10YR 5/1		VMO FB	P	35	50	- 111	2	17.86	-0.32	2	2
50 52	2	0-40 0-40	mSZL HCL	10YR 3/2 10YR 3/1			40-75 40-120	mSL LmS	10YR 6/1 10YR 6/2		MO MO	M M	75-120	mS	7.5YR 4/3		CO	М	40 40		- 1	2	20.86 2.86	5.68 -16.32	2 3a	2 3a
53	1	0-35	C	10YR 4/2		FO	35-120	C	10YR 6/1		MO	P							35	35	iii	3b	7.86	-10.32	3a	3b
54	2	0-45	mSL	10YR 4/2		FO	45-80	LmS	7.5YR 5/3		MO	M	80-120	mS	5YR 4/4		FO	M	45	55	1	1	-1.14	-16.32	3a	3a
55	2	0-40	mSL	10YR 4/2		FO	45-120	LmS	7.5YR 5/3		MO	M			. ,				45		1	1	-1.14	-20.32	3a	3a
56	2	0-40	mSL	10YR 4/2		FO	45-120	mS	7.5YR 6/4		MO	M							45		1	1	-10.14	-26.32	3a	3a
57	2	0-40	mSL	10YR 4/2		FO	45-120	LmS	7.5YR 5/3		MO	M							45		1	1	-1.14	-20.32	3a	3a
58	1	0-45	mSZL	10YR 3/2			45-120	SCL	10YR 5/1		MO FB	M							40		H	1	42.86	7.68	2	2
59	2	0-35	mSZL	10YR 3/2			35-120	SC	10YR 6/1		MO CB	Р							35	35	Ш	2	21.86	-3.32	2	2
60	2	0-50	mSZL	10YR 3/1			50-120	mS	10YR 5/2		CO FB	M							50		1	1	9.86	-6.32	2	2
61	2	0-40	mZCL	10YR 3/2			40-120	Peat	10YR 2/1										20	20	1	1	156.86	59.68	1	1
66 67	0 2	0-30 0-35	HCL MCL	10YR 4/2 10YR 4/2			30-50 35-50	C mSL	10YR 4/2 10YR 5/2		MOB FO	P M	50-120	С	10YR 5/1		МО	Р	30 35	30 50	III	3b 3a	-40.14 15.86	-35.32 -2.32	3b 2	3b 3a
68	2	0-35	mSL	101R 4/2 10YR 3/3			35-30	SCL	101K 5/2		MO	P	70-120	mS	10YR 6/0		MO	M	35	35	111	2	-0.14	-2.32	Z 3a	3a
69	2	0-35	mSI	10YR 3/3			35-70	SCL	10YR 5/1		MO	P	70-120	mS	10YR 6/0		MO	M	35	35	111	2	-0.14	-10.32	3a	3a
70	2	0-40	mSZL	10YR 3/2			40-120	LmS	10YR 5/1		CO FB	M						***	40		1	1	6.86	-12.32	3a	3a
71	2	0-50	mSZL	10YR 3/1			50-60	SC	10YR 5/1		CO FB	M	60-120	mS	10YR 6/1		CO FB	M	50		1	1	14.86	1.68	2	2
73	2	0-30	MCL	10YR 3/2			30-120	Peat	10YR 2/1												1	1	167.86	70.68	1	1
74	2	0-30	mCL	10YR 3/2			30-120	Peat	10YR 2/1												1	1	167.86	70.68	1	1
75	2	0-40	mSZL	10YR 4/2			40-120	Peat	10YR 2/1												1	1	156.86	59.68	1	1
76	1	0-40	mZCL	10YR 3/2			40-120	Peat	10YR 2/1												1	1	156.86	59.68	1	1
77	1	0-40	mZCL	10YR 4/2			40-120	Peat	10YR 2/1												1	1	156.86	59.68	1	1
79	2	0-30	С	10YR 4/2			30-120	C	10YR 5/1		MO	P							30	30	Ш	3b	5.86	-12.32	3a	3b
80	2	0-30	С	10YR 4/2			30-70	C	10YR 5/1		MO	P	70-120	SZL	5YR 5/3		MO	M	30	30	111	3b	25.86	-12.32	3a	3b
81	2	0-30	C	10YR 4/2			30-70	С	10YR 6/1		MOB	M	70-120	mS	7.5YR 4/4		MO	M	30	20		3a	3.86	-0.32	3a	3a
82 83	2	0-30 0-30	HCL HCL	10YR 4/2 10YR 4/2			30-60 30-60	C C	10YR 5/2 10YR 5/1		MO MO	P P	60-120 60-120	LmS mS	7.5YR 4/4 10YR 6/1		MO MO	M M	30 30	30 30	III	3b 3b	2.86 -3.14	-13.32 -15.32	3a 3a	3b 3b
83 84	2	0-30	HCL	10YR 4/2			30-60	C	10YR 5/1 10YR 5/1		MO	P	60-120	ms ms	10YR 6/1		MO	M	30	30	111	3b	-3.14 -3.14	-15.32 -15.32	3a 3a	3b
85	2	0-40	mSZL	10YR 3/2			40-120	mS	10YR 5/1		FB	М	00 120	1113	10111 0/1		IVIO	141	30	50	ï	1	-2.14	-18.32	3a	3a

																				ess Asses	ment	Grade	Droughtiness /	Assessment	Grade	Grade by
		Topsoil					Upper Sub						Lower Subs						Depth to		Wetness	limit by	MB	MB	limit by	most limiting
Sample No		Depth	Texture		Stoniness	Mottles	Depth	Texture		Stoniness	Mottles	Structure	Depth	Texture	Colour	Stoniness	Mottles	Structure	Gley	SPL	Class	Wetness	Wheat	Potato	Droughtiness	factor
86	2	0-30	mSZL	10YR 3/2			30-120	mS	10YR 5/1		FB	M							30		!	1	-14.14	-30.32	3b	3b
87 88	2	0-40	mSZL	10YR 2/1			40-120	LmS	10YR 4/3		CO FB	M									!	1	6.86	-12.32	3a 1	3a
88 89	2 1	0-45 0-40	HZCL HZCL	10YR 4/2 10YR 4/2			45-120 40-120	Peaty L LmS	10YR 2/1 10YR 2/1			M										2	104.86 30.86	37.68 -3.32	2	2
90	2	0-40	mSZL	101R 4/2			40-120	Peat	10YR 2/1													1	156.86	-5.52 59.68	1	1
91	2	0-30	C	10YR 4/2			30-120	C	10YR 5/3		МО	Р							30	30	iii	3b	5.86	-12.32	3a	3b
92	2	0-30	c	10YR 4/2			30-120	c	10YR 5/1		MO	P							30	30	111	3b	5.86	-12.32	3a	3b
93	1	0-35	HCL	10YR 4/2			35-70	SC	10YR 5/1		MOB	P	70-120	LmS	5YR 5/3		MOB	М	35	35	III	3b	8.36	-6.82	2	3b
94	2	0-30	mSL	10YR 3/2			30-60	mS	10YR 5/3		MO	M	60-80	С	10YR 5/1		MOD	Р	30	60	III	2	34.86	47.68	1	2
95	3	0-30	mSL	10YR 3/2			30-60	SCL	10YR 5/1		MOB	C Prism	60-120	LmS	5YR 5/4		CB	CAB	30	30	III	2	-35.14	-25.32	3b	3b
96	2	0-35	MCL	10YR 4/2		FO	35-70	SC	10YR 5/1		MO	P	70-120	mS	5YR 4/4		FB	M	35	35	III	3a	3.36	-6.82	3a	3a
97	2	0-30	mSL	10YR 3/2			30-60	С	7.5Y 6/1		MOB	P	60-120	mS	5YR 5/4		FB	M	30	30	III	2	-6.14	-18.32	3a	3a
98	2	0-40	SCL	10YR 3/1			40-60	C	10YR 3/1		CO CB	P	60-120	C	10YR 5/1		VMO CB	P	60	60	II	2	9.86	-8.32	2	2
99	2	0-30	mSZL	10YR 3/2			30-50	LmS	10YR 5/2		CO FB	M	50-120	mS	10YR 5/2		MO FB	M	30		1	1	-10.14	-26.32	3a	3a
100	2	0-30	mSZL	10YR 3/2			30-50	LmS	10YR 2/1			M	50-75	LmS	10YR 5/2		CO FB	M	50		!	1	-3.14	-22.32	3a	3a
101	2	0-30	mSL	10YR 4/2			30-120	mS	10YR 5/4		MOB	MP									!	1	-20.14	-36.32	3b	3b
102 103	2	0-30 0-30	mSL mSL	10YR 4/2 10YR 4/2			30-120 30-120	mS mS	10YR 5/4 10YR 5/4		MOB MOB	MP MP										1	-20.14 -20.14	-36.32 -36.32	3b 3b	3b 3b
103	2	0-30	HZCL	101R 4/2			40-60	MZCL	101R 3/4 10YR 2/1		IVIOB	M	60-80	С	2.5YR 4/2		VMO	Р	60	60		3a	-3.14	7.68	3a	3a
105	2	0-30	HCL	101R 4/2			30-70	C	101R 2/1		со	P	70-120	Org C	10YR 3/1		FO	CAB	30	30	111	3b	53.86	-9.32	2	3b
106	2	0-30	HCI	10YR 4/2			30-120	c	2.5Y 4/1		MO	P	70 120	0.8 0	10111 5/1			Cito	30	30	111	3b	8.86	-9.32	2	3b
107	2	0-30	MCL	10YR 4/2		FO	30-60	SCL	10YR 5/1		MO	P	60-120	LmS	10YR 6/1		МО	М	30	30	III	3a	3.86	-13.32	3a	3a
108	2	0-30	MCL	10YR 4/2			30-70	С	10YR 6/1		MOB	Р	70-120	mS	5YR 4/4		CB	M	30	30	III	3a	-1.14	-9.32	3a	3a
109	2	0-30	LmS	10YR 3/2			30-60	mS	10YR 6/3		MOB	P	60-90	С	10YR 5/1		MOB	M	30	60	III	2	-33.14	-60.32	4	4
110	4	0-35	HCL	10YR 4/2		FO	35-60	C	10YR 5/1		MO	Р	60-120	mS	5YR 5/4		FB	M	35	35	III	3b	-0.64	-12.82	3a	3b
111	5	0-30	mSL	10YR 3/2			30-70	mS	10YR 6/3		MOB	M	70-120	mS	5YR 5/4		FB	M	30		1	1	-20.14	-36.32	3b	3b
112	2	0-35	mSL	10YR 3/2			35-70	mSL	10YR 6/3		MOB	M	70-120	mS	5YR 5/4		CB	M	35		1	1	8.86	-3.32	2	1
113	2	0-35	HCL	10YR 3/1		FO	35-60	SCL	10YR 6/2		MOB	P	60-120	mS	5YR 5/4		MB	M	35	35	Ш	3b	0.36	-12.82	3a	3b
114	2	0-35	HCL	10YR 3/2			35-70	c	10YR 6/1		MO	P	70-120	mS	5YR 4/4		MB	M	35	35	III	3b	1.36	-6.82	3a	3b
115	2	0-30 0-40	mSL	10YR 3/2			30-90 40-80	mS	10YR 5/3		FO FB	M	90-120	SC	10YR 5/1		CO FB	P P	30 40	90	11	1	-11.14 6.86	-36.32 -20.32	3b	3b 3a
116 117	2	0-40	mSL mSL	10YR 3/2 10YR 3/2			30-60	LmS C	10YR 5/3 10YR 3/2		FO FB FB	M P	80-95 60-120	SC C	10YR 5/1 10YR 5/1		MO CB	P	40 60	85 60		1	5.86	-20.32 -12.32	3a 3a	3a 3a
117	2	0-30	mSL	101K 3/2			30-90	LmS	101R 3/2 10YR 4/1		MOB	M	90-120	C	7.5YR 3/3		IVIO CB	P	30	60		1	-6.14	-12.32	3a	3a
119	3	0-30	mSI	10YR 4/2			30-120	mS	10YR 5/4		MOB	Mplaty	30 120		7.511(3/3	'			30		ï	1	-20.14	-36.32	3b	3b
120	4	0-30	mSI	10YR 4/2			30-70	Peat	10YR 2/1		IVIOD	ivipiaty	70-120	ImS	7.5YR 5/2		FB	М	70		i	1	74.86	67.68	1	1
121	4	0-30	mSL	10YR 4/2			30-120	mS	10YR 5/4		MOB	MP			,						1	1	-20.14	-36.32	3b	3b
122	2	0-35	С	10YR 3/1			35-60	Peat	10YR 2/1				70-120	mS	2.5Y 7/1		FO	CAB	70		1	3a	12.86	26.68	2	3a
123	2	0-30	HCL	10YR 4/2			30-120	С	2.5Y 4/1		MO	P							30	30	III	3b	8.86	-9.32	2	3b
124	2	0-30	С	10YR 4/2		FO	30-120	C	2.5Y 4/1		MO	Р							30	30	III	3b	5.86	-12.32	3a	3b
125	2	0-30	C	10YR 4/2		FO	30-50	C	2.5Y 5/1		MO	P	50-120	С	2.5Y 4/1		CO	P	30	30	III	3b	5.86	-12.32	3a	3b
126	2	0-30	mSL	10YR 3/2			30-80	C	10YR 6/1		MO	P	80-120	LmS	7.5YR 5/3	1	COB	M	30	30	III	2	1.86	-12.32	3a	3a
127	2	0-30	mSL	10YR 3/2			30-50	C	10YR 6/1		MO	P	50-120	mSL	5YR 4/4		CB	M	30	30	III	2	33.86	-8.32	2	2
128	2	0-30	mSL	10YR 3/2			30-70	mS	10YR 6/3		MOB	M	70-120	mS	5YR 5/4		FB	M	30		I	1	-20.14	-36.32	3b	3b
129	2	0-30	mSL	10YR 3/2			30-80	C	10YR 6/1		MO	P P	80-120	LmS	7.5YR 5/3	}	COB	M	30	30	III	2	1.86	-12.32	3a	3a
130 131	5 3	0-45 0-30	HCL mSI	10YR 3/1 10YR 4/2			45-80+ 30-60	C mS	10YR 6/1 10YR 7/2		MO MO	M	60-120	mS	5YR 5/4			М	45 30	45	"	3a 1	-11.64 -20.14	-1.82 -36.32	3a 3b	3a 3b
132	2	0-50	mSI	101K 4/2			60-70	LmS	101R 7/2		FO FB	M	70-120	mS	10YR 5/2		MO CB	P	70		-	1	-20.14	-30.32	3a	3a
133	2	0-30	mSL	10YR 3/2			30-120	LmS	10YR 6/1		COFR	M	70 120	1113	10111 3/2		IVIO CD		30		i	1	-9.14	-28.32	3a	3a
134	2	0-40	mSL	10YR 3/1			40-60	LmS	10YR 5/3		CO FB	M	60-120	SC	10YR 5/1		MO CB	Р	40	60	i	1	10.86	-16.32	3a	3a
135	2	0-40	mSL	10YR 2/1			40-120	mS	7.5YR 4/4		FB	M	-		-,-				-		1	1	-10.14	-26.32	3a	3a
136	2	0-50	SCL	10YR 3/2			50-65	SC	10YR 5/3		CO FB	P	65-120	SC	10YR 5/1		MO CB	P	50	50	II.	2	20.86	-4.32	2	2
137	2	0-35	Org LmS	10YR 2/1			35-50	LmS	5YR 4/4		CB	M	50-120	mS	10YR 6/2		FOB	M	50		1	1	26.36	10.18	2	2
138	2	0-40	HCL	10YR 4/2			40-60	ZSL	10YR 5/3		MO	M	60-120	Peat	5YR 2/1				40		1	2	123.86	23.68	1	2
139	4	0-50	mZCL	10YR 4/3			50-120	Peat	5YR 2/1												1	1	142.86	45.68	1	1
140	5	0-40	mZCL	10YR 4/3			40-60	ZSL	10YR 5/3		MO	M	60-80	Org C			MO	Р	40	60	Ш	2	15.86	17.68	2	2
141	3	0-40	mSL	10YR 3/2			40-60	Peat	10YR 2/1				60-120	mS	2.5Y 7/1		FO	M	60		I	1	34.86	25.68	1	1
142	2	0-30	HCL	10YR 4/2		FC	30-70	LmS	10YR 6/1		FO	M	70-120	mS	2.5Y 7/1		FO	M	30		1	2	-11.14	-25.32	3a	3a
143	2	0-35	MCL	10YR 4/2		FO	30-120	ZC	7.5YR 4/2		FO	М							30		- 11	2	21.36	0.18	2	2
144 145	2	0-45 0-40	HZCL HZCI	10YR 4/2 10YR 4/2			45-120 40-50	C	2.5Y 4/1 2.5Y 4/1		MO MO	P P	50-120	С	NS		VMO	Р	45 40	45 40	III	3a 3h	20.86 17.86	2.68 -0.32	2	3a 3b
145	2	0-40	LmS	10YR 4/2 10YR 3/1			40-50	mS	10YR 5/2		MO	M	60-120	mS	10YR 7/2		CO	M	40	40	1	3D 1	-26.14	-0.32 -42.32	2 3b	3b
147	2	0-40	Lms	10YR 3/1 10YR 3/1			45-120	SC	10YR 5/2 10YR 5/1		COB	IVI P	00-120	1113	101K //2		co	iVI	40	45	1	1	0.86	-42.32 -24.32	30 3a	30 3a
149	2	0-45	mSL	101R 3/1			30-50	C	10YR 5/1		MOB	P	50-120	mS	10YR 6/2		co	М	30	30	iii	2	-8.14	-24.32	3a	3a
150	2	0-30	mSL	10YR 3/1			30-30	mS	101R 5/2		MO	M	70-120	mS	5YR 5/4		20	M	35	50		1	-20.14	-36.32	3b	3b
151	2	0-40	mSL	10YR 3/2			40-70	LmS	10YR 6/2		CO	M	70-120	mS	10YR 7/2		FO	M	40		i	1	-6.14	-20.32	3a	3a
152	2	0-35	mSL	10YR 3/1			35-50	C	10YR 5/1		MOB	P	50-120	mS	10YR 7/2		FO	M	35	35	iii	2	-6.14	-22.32	3a	3a
153	2	0-35	mSL	10YR 3/1			35-120	mS	10YR 7/2		MO	CAB		-	- /-		-		35		1	1	-60.64	-55.82	4	4
154	2	0-30	mSL	10YR 3/1			30-50	c	10YR 6/1		CO	P	50-120	mS	10YR 6/2		FOB	M	30	30	Ш	2	-8.14	-24.32	3a	3a
155	2	0-30	MCL	10YR 3/2			30-50	C	10YR 6/2		CO	P	50-120	mS	10YR 6/1		FO	M	30	30	III	3a	-5.14	-21.32	3a	3a

																				ess Assesr		Grade	Droughtiness		Grade	Grade by
		Topsoi					Upper Sub						Lower Subs						Depth to		Wetness	limit by	MB	MB	limit by	most limiting
Sample No					Stoniness	Mottles	Depth	Texture	Colour	Stoniness	Mottles	Structure	Depth	Texture		Stoniness		Structure	Gley	SPL	Class	Wetness	Wheat	Potato	Droughtiness	factor
156	2	0-30	MCL	10YR 3/2			30-50	C	10YR 6/2		CO	P	50-120	mS	10YR 6/1		FO	M	30	30	III	3a	-5.14	-21.32	3a	3a
157	4	0-35	Org LmS	10YR 2/1			35-50	LmS	5YR 4/4		CB	M	50-120	mS	10YR 6/2		FOB	M	50		- 1	1	26.36	10.18	2	2
158	5	0-40	HCL	10YR 4/2			40-80	MZCL	10YR 4/2		MO	M							40		II.	3a	38.86	7.68	2	3a
159	2	0-50	mZCL	10YR 4/3			50-120	Peat	5YR 2/1			***									ï	1	142.86	45.68	1	1
		0-40									140		60.430	D+	EVD 2 /4				40		- 1	2		23.68	1	
160	3		HCL	10YR 4/2			40-60	ZSL	10YR 5/3		MO	M	60-120	Peat	5YR 2/1								123.86			2
161	3	0-35	mSL	10YR 3/2			35-45	Peat	10YR 2/1				45-120	mS	2.5Y 7/1		FO	M	45		- 1	1	10.86	-5.32	2	1
162	3	0-30	HCL	10YR 4/2			30-70	LmS	10YR 6/1		FO	M	70-120	mS	2.5Y 7/1		FO	M	30		- 1	2	21.86	2.68	2	2
163	3	0-35	HCL	10YR 4/2			35-120	C	2.5Y 5/1		FO	M							35	35	III	3b	22.86	3.68	2	3b
164	5	0-40	HZCL	10YR 4/2			40-120	ZC	2.5Y 4/1		VMO	М							40		II.	3a	26.86	5.68	2	3a
165	4	0-10	HZCL	10YR 4/2			10-30	C	2.5Y 4/1		VMO	P	30-120	С	2.5Y 5/1		VMO	P	10	10	111	3b	-0.14	-18.32	- 3a	3b
									-									•	40	10						
166	2	0-40	LmS	10YR 3/1			40-60	mS	10YR 5/2		MO	M	60-120	mS	10YR 7/2		CO	M			- 1	1	-26.14	-42.32	3b	3b
167	2	0-30	LmS	10YR 3/1			30-50	mSL	10YR 5/2		MO	M	50-120	mS	10YR 7/2		CO	M	30		- 1	1	-16.14	-32.32	3b	3b
168	2	0-40	LmS	10YR 3/1			40-60	mS	10YR 5/2		MO	M	60-120	mS	10YR 7/2		CO	M	40		- 1	1	-26.14	-42.32	3b	3b
169	3	0-40	LmS	10YR 3/1			40-60	LmS	7.5YR 5/8			M	60-120	mS	10YR 7/2		CO	M	60		1	1	-23.14	-38.32	3b	3b
170	2	0-30	mSL	10YR 3/1			30-120	mS	10YR 6/2		MO	M							30		- 1	1	-20.14	-36.32	3b	3b
171	2	0-30	mSL	10YR 3/1			30-120	mS	10YR 6/2		MO	M							30		1	1	-20.14	-36.32	3b	3b
172		0-35							10YR 6/2		CO		60-120		10YR 7/2		co				- 1			-26.32		
	2		mSL	10YR 3/2			35-60	LmS				M	60-120	mS	101K //2		CO	M	35		'	1	-11.14		3a	3a
173	2	0-30	mSL	10YR 3/2			30-120	LmS	10YR 5/3		CO	M							30		ı	1	-9.14	-28.32	3a	3a
174	2	0-30	mSL	10YR 3/1			30-60	mSL	10YR 6/2		FO	M	60-120	mS	10YR 6/2		FOB	M	30		- 1	1	1.86	-12.32	3a	3a
175	2	0-35	mSL	10YR 3/1			35-120	C	10YR 6/1		co	P							35	35	III	2	7.86	-10.32	3a	3a
176	4	0-40	HCL	10YR 4/2			40-80	MZCL	10YR 4/2		MO	М							40		п	3a	-1.14	7.68	3a	3a
177	5	0-40	HCL	10YR 4/2			40-120	Peat	5YR 2/1												ï	2	152.86	55.68	1	2
178	3	0-40	mZSL	10YR 4/3			40-70	ZSL	10YR 5/3		MO	M							40		- 1	1	-5.14	11.68	3a	3a
179	2	0-30	HCL	10YR 4/2			30-60	HCL	10YR 4/3		COB	P	60-120	С	10YR 3/1		FO	M		30	III	3b	12.86	-9.32	2	3b
180	2	0-35	ZC	10YR 4/3			35-70	ZC	7.5YR 4/2		CO	M							35		1	3a	-22.14	-3.32	3b	3a
181	4	0-35	ZC	10YR 4/2			35-70	C	2.5Y 4/1		MO	C Prism	70-120	С	2.5Y 5/1		MO	CAB	35	35	III	3b	7.86	-10.32	3a	3b
182	5	0-40	ZC	10YR 4/2			40-55	С	2.5Y 5/3		VMO	Р	55-120	С	2.5Y 5/1		MO	Р	40	40	Ш	3b	9.86	-8.32	2	3b
													33 120	C	2.51 5/1		IVIO			40						
183	3	0-35	MCL	10YR 4/2			35-120	mS	10YR 7/1		CO	M		_					35			1	-11.64	-27.82	3a	3a
184	4	0-35	MCL	10YR 4/2			35-80	mSL	10YR 7/1		CO	M	80-120	mS	10YR 7/1		CO	M	35		- 1	1	18.36	0.18	2	2
185	3	0-35	MCL	10YR 4/2			35-80	mSL	10YR 7/1		CO	M	80-120	mS	10YR 7/1		CO	M	35		- 1	1	18.36	0.18	2	2
186	2	0-35	Org mSL	10YR 3/1			35-120	mS	7.5YR 6/2		FB	M									- 1	1	23.36	7.18	2	2
187	2	0-35	Org mSI	10YR 3/1			35-120		7.5YR 6/2		FB	M									1	1	23.36	7.18	2	2
188	2	0-30	HCL	10YR 4/2			30-70+	C	10YR 5/3		MOB	P							30	30	III	3b	8.86	-9.32	2	3b
																				30						
189	2	0-25	SCL	10YR 3/1			25-120	mS	10YR 6/2		MO	M							25			1	-25.14	-41.32	3b	3b
190	2	0-25	SCL	10YR 3/1			25-120	mS	10YR 6/2		MO	M							25		- 1	1	-25.14	-41.32	3b	3b
191	2	0-35	SCL	10YR 3/1			35-70	LmS	10YR 5/1		MOB	M	70-120	mS	10YR 6/1			M	35		- 1	1	-10.14	-24.32	3a	3a
192	3	0-50	ZC	10YR 4/2			50-80	C	2.5Y 4/1		co	P	80-120	С	NS		MO	Р	50	50	II.	3a	13.86	-4.32	2	3a
193	4	0-30	7C	10YR 4/2			30-120	С	2.5Y 4/1		VMO	Р							30	30	III	3b	5.86	-12.32	3a	3h
194	2	0-30	ZC	10YR 4/2			30-120	c	2.5Y 4/1		VMO	P							30	30	111	3b	5.86	-12.32	3a	3h
195	2	0-50	mSL				50-70				MO		70 120		10YR 6/2		CO		50	30		1	1.86	-12.32	3a	3a
				10YR 4/2				LmS	2.5Y 5/2			C Platy	70-120	mS							'					
196	2	0-40	HCL	10YR 3/2			40-50	HCL	10YR 3/2		MB	M	50-120	LmS	2.5Y 5/3		CO	M	50		ı	2	9.86	-9.32	2	2
197	2	0-40	HCL	10YR 4/2			40-90	mSL	10YR 7/1		CO	M	90-120	mS	7.5YR 5/2		CO	M	40		- 1	2	25.86	1.68	2	2
198	2	0-30	mSL	10YR 3/2			30-60	LmS	10YR 4/3		CO	M	60-120	mS	10YR 6/2		CO	M	60		1	1	-15.14	-30.32	3b	3b
199	2	0-30	mSI	10YR 3/2			30-60	ImS	10YR 4/3		CO	М	60-120	mS	10YR 6/2		CO	М	60		- 1	1	-15.14	-30.32	3b	3h
200	2	0-45	mSL	10YR 3/2			45-60	LmS	10YR 6/1		CO	CAB	60-120	mS	10YR 5/8			M	45		- 1	1	-13.64	-31.82	3b	3b
201	2	0-35	MCL	10YR 4/2			35-60	mSL	10YR 5/2		CO	M	60-120	LmS	10YR 6/1		FO	M	35			1	12.36	-5.82	2	2
202	2	0-30	HCL	10YR 4/2			30-60	С	10YR 5/3		MOB	P	60-120	Peat	10YR 2/1		CO	M	30	30	III	3b	110.86	10.68	1	3b
203	2	0-35	Org SCL	10YR 3/1			35-120	mS	10YR 6/2		MO	CAB							35		1	1	-22.14	-17.32	3b	3b
204	2	0-35	Org SCL	10YR 3/1			35-120	mS	10YR 6/2		MO	M							35		1	1	23.36	7.18	2	2
205	2	0-35	SCL	10YR 4/2			35-120	mS	10YR 6/2		MO	М							35		1	1	-15.14	-31.32	3b	3b
206	2	0-35	mSL	10YR 3/1			35-60		7.5YR 5/4		FO	M	60-120	MCL	10YR 6/6			М	33		i	1	14.86	-22.32	3a	3a
200	2	0-30	HCL				30-50	C	10YR 4/2		MOB	P					COB		30	30	iii	3h	0.86	-22.32	3a	
	_			10YR 3/2				-					50-120	mS	10YR 5/2		COR	M		30	Ш					3b
208	2	0-50	mSL	10YR 4/2			50-120	mS	10YR 7/1		COB	M							50		1	1	-0.14	-16.32	3a	3a
209	2	0-50	mSL	10YR 4/2			50-120	mS	10YR 6/1		MO	M							50		- 1	1	-0.14	-16.32	3a	3a
210	2	0-50	mSL	10YR 3/2			50-90	LmS	10YR 6/1		CO	CAB	90-120	mS	10YR 5/8			М	50		1	1	-20.14	-30.32	3b	3b
211	2	0-40	HCL	10YR 4/2			40-60	Peat	10YR 2/1				60-120	mS	10YR 5/1		CO	М	60		- 1	2	38.86	29.68	1	2
212	2	0-40	HCL	10YR 4/2			40-60	C	10YR 5/2		МО	Р	60-120	Org C	10YR 4/1		CO	P	40	40	iii	3b	67.86	5.68	2	3b
								-																		
213	2	0-30	С	10YR 4/1			30-70	mS	10YR 5/1		MO	M	70-120	Org C	5YR 4/1		MO	Р	30	70	II	3a	34.86	-36.32	3b	3a
214	2	0-35	mSL	10YR 3/1			35-120		7.5YR 5/4		FO	M									- 1	1	-15.14	-31.32	3b	3b
215	2	0-40	C	10YR 3/2			40-90	Peat	10YR 2/2				90-120	C	10YR 4/2			M	90	90	II	3a	100.86	51.68	1	3a
216	3	0-25	HCL	10YR 4/2			25-80	mSL	10YR 4/1		MO	Р	80-120	Peat	10YR 2/1				25		1	2	72.36	-20.82	3a	3a
217	3	0-30	HCL	10YR 4/2			30-60	C	10YR 5/3		MOB	Р	60-120	Peat	10YR 2/1		CO	М	30	30	iii	3b	110.86	10.68	1	3b
						FO.						P						P							2	
218	2	0-35	C	10YR 4/1		FO	35-50	C	10YR 5/2		MOB		50-120	Org C	5YR 4/1		MOB	۲	35	35	III	3b	70.86	9.68		3b
219	2	0-40	C	10YR 3/1			40-120	C	10YR 6/1		MO	P							40	40	Ш	3b	9.86	-8.32	2	3b
220	2	0-35	C	10YR 4/1		FO	35-50	C	10YR 5/2		MOB	P	50-120	Org C	5YR 4/1		MOB	Р	35	35	III	3b	70.86	9.68	2	3b
223	2	0-30	С	10YR 4/2			30-70	Org C	10YR 4/1		MOB	P	70-120	С	10YR 5/1			P	30	30	Ш	3b	43.86	27.68	1	3b
224	2	0-35	c	10YR 4/2			35-60		10YR 4/2		МОВ	М	60-120	c	10YR 5/2		CO	Р	35	60	Ш	3b	31.86	14.68	1	3b
227	2	0-40	c	10YR 4/1		CO	40-60	C	10YR 5/1		MO	р.	60-120	Peat	10YR 2/1				40	40	111	3b	111.86	11.68	1	3b
227	_		-			FO		-				P							40	40	111					
228	2	0-40	HCL	10YR 4/2		FU	40-60	С	10YR 5/2		CO	Р	60-120	Peat	10YR 2/1				40	40	Ш	3b	115.86	15.68	1	3b

Wetness Assesment

Grade Droughtiness Assessment Grade

Grade by

																				ess Assesn		Grade	Droughtiness		Grade	Grade by
		Topsoil					Upper Sub						Lower Subs						Depth to		Wetness	limit by	MB	MB	limit by	most limiting
Sample No		Depth	Texture		Stoniness	Mottles	Depth	Texture	Colour	Stoniness		Structure	Depth	Texture	Colour	Stoniness	Mottles	Structure	Gley	SPL	Class	Wetness	Wheat	Potato	Droughtiness	factor
229	2	0-30	C	10YR 4/1			30-120	С	10YR 5/1		MO	P							30	30	III	3b	5.86	-12.32	3a	3b
230	1	0-30	C	10YR 4/1			30-120	C	10YR 5/1		MO	P							30	30	III	3b	5.86	-12.32	3a	3b
231	2	0-35	HCL	10YR 4/2			35-70	C	10YR 4/1		MO	P	70-120	Org C	10YR 5/1		MO	Р	35	35	III	3b	56.36	-6.82	2	3b
233	2	0-35	mSL		2-6cm 5%		35-60	mS	10YR 6/4	30%		M	60 IMP		-				35		1	1	-48.99	-44.62	3b	1
236	3	0-30	MCL	10YR 4/2	2 0011 370		30-60	C	10YR 5/2	5070	MOB	Р	60-120	С	10YR 5/1		МО	Р	30	30	iii	3a	8.86	-9.32	2	3a
237		0-30				FO		C				P					IVIO	r	40	40	111			15.68	1	3b
	2		HCL	10YR 4/2			40-60		10YR 5/2		CO		60-120	Peat	10YR 2/1							3b	115.86			
238	2	0-35	C	10YR 4/2		FO	35-120	C	10YR 5/1		MO	P							35	35	III	3b	7.86	-10.32	3a	3b
239	2	0-35	С	10YR 4/2		FO	35-120	C	10YR 5/1		MO	P							35	35	Ш	3b	7.86	-10.32	3a	3b
240	0	0-35	С	10YR 4/2		FO	35-120	C	10YR 5/1		MO	P							35	35	III	3b	7.86	-10.32	3a	3b
241	0	0-35	С	10YR 4/2			35-50	С	10YR 5/1		MO	Р	50-120	Peat	10YR 2/1			М	35	35	III	3b	126.86	29.68	1	3b
242	1	0-30	c	10YR 4/1		FO	30-120	c	10YR 5/1		MO	P							30	30	III	3b	5.86	-12.32	3a	3b
													50.400		401/0 5/0											
243	-1	0-30	HCL	10YR 4/2		FO	30-50	С	10YR 5/2		MO	Р	50-120	LmS	10YR 5/2				30	30	Ш	3b	1.86	-17.32	3a	3b
244	3	0-35	С	10YR 4/1			35-50	С	10YR 5/1		MO	Р	50-120	Peat	10YR 2/1				35	35	Ш	3b	126.86	29.68	1	3b
249	3	0-30	MCL	10YR 4/2			30-60	C	10YR 5/2		MOB	P	60-120	C	10YR 5/1		MO	Р	30	30	Ш	3a	8.86	-9.32	2	3a
250	2	0-35	С	10YR 4/2		FO	35-60	C	10YR 4/1		MO	P	60-120	mSL	10YR 6/1		MOB	M	35	35	III	3b	31.86	-8.32	2	3b
251	2	0-30	HCL	10YR 4/2			30-50	С	10YR 5/2		CO	P	50-120	C	10YR 5/1		MOB	Р	30	30	III	3b	8.86	-9.32	2	3b
252	2	0-30	C	10YR 4/1		FO	30-120	Ċ	10YR 6/1		CO	P							30	30	III	3b	5.86	-12.32	3a	3b
				. ,																	III					
253	2	0-40	C	10YR 4/2		FO	40-120	Org C	10YR 4/1		MO	P							40	40		3b	82.86	21.68	1	3b
254	2	0-35	С	10YR 4/1			35-120	Org C	10YR 4/1		MO	P							35	35	III	3b	85.86	24.68	1	3b
255	2	0-30	С	10YR 3/2			30-120	Org C	10YR 5/1		MO	P							30	30	III	3b	88.86	27.68	1	3b
256	2	0-30	С	10YR 4/1		CO	30-50	C	10YR 5/1		MOB	P	50-120	Peat	10YR 2/1				30	30	III	3b	124.86	27.68	1	3b
257	3	0-35	C	10YR 4/1			35-50	С	10YR 5/1		MO	P	50-120	Peat	10YR 2/1				35	35	III	3b	-41.14	-36.32	3b	3b
258	2	0-35	mSI	10YR 3/2			35-60	mSL	2.5YR 5/2		COB	М	60-120	LmS	7.5YR 5/6		COB	м	35		1	1	8.86	-9.32	2	2
259	3	0-40	mSL				40-60	LmS			CO	M		mS			MO	M	40		- :	_	-7.14	-22.32	3a	=
				10YR 2/1					10YR 5/2				60-120		10YR 5/2		IVIU				1	1				3a
260	3	0-30	mSL	10YR 2/1			30-50	SCL	10YR 5/2		MO	M	50-80	mS	7.5YR 4/6			M	30		ı	1	-24.14	-20.32	3b	3b
261	5	0-35	mSL	10YR 2/2			35-50	LmS	7.5YR 6/2			G	50-60	SC	2.5YR 4/4		MO	Р	35	50	III	2	-34.64	-24.82	3b	3b
266	2	0-35	HCL	10YR 4/2	2-6cm 5%		35-120	mS	10YR 6/2	40%	MOB	WMSAB							35		1	2	-30.82	-39.19	3b	3b
267	2	0-35	HCL	10YR 4/3	2-6cm 5%		35-120	LmS	10YR 6/3	40%	MOB	M							35		1	1	-24.82	-34.99	3b	3b
268	2	0-30	C	10YR 4/1		FO	30-120	C	10YR 6/1		CO	P							30	30	III	3b	5.86	-12.32	3a	3b
269	3	0-35	C	10YR 4/1		10	35-120	c	10YR 5/1		co	P								35	111	3b	7.86	-10.32	3a	3b
								-	-										35							
270	2	0-35	С	10YR 4/1			35-120	С	10YR 5/1		CO	Р							35	35	III	3b	7.86	-10.32	3a	3b
271	2	0-35	С	10YR 4/1			35-120	Org C	10YR 4/1		MO	Р							35	35	III	3b	85.86	24.68	1	3b
272	3	0-35	Org C	10YR 3/2			35-120	Org C	10YR 5/1		MO	P							35	35	III	3b	106.86	45.68	1	3b
273	3	Non AG																								
274	3	0-35	С	10YR 4/1			35-70	С	10YR 5/1		MO	Р	70-120	Peat	10YR 2/1				35	35	III	3b	92.86	-10.32	3a	3b
																					111					
275	2	0-35	C	10YR 4/1			35-50	С	10YR 5/1		MO	Р	50-120	Peat	10YR 2/1				35	35	III	3b	-41.14	-36.32	3b	3b
276	3	0-30	C	10YR 4/1			30-50	mSL	10YR 3/1		COP	M	50-120	mS	10YR 6/1		MOB	M	50		1	3a	-4.14	-20.32	3a	3a
277	3	0-35	mSL	10YR 3/2			35-50	LmS	10YR 4/1		COB	M	70-120	mS	10YR 6/2		CO	M	35		1	1	-12.14	-28.32	3a	3a
278	4	0-35	mSL	10YR 3/2			35-50	mS	10YR 7/1		MOB	M	50-120	mS	10YR 5/6		COB	M	35		1	1	-15.14	-31.32	3b	3b
279	4	0-40	mSL	10YR 3/2			40-60	mSL	10YR 6/1		COB	M	60-120	LmS	7.5YR 7/2		CO	M	40		1	1	9.86	-8.32	2	2
280	4	0-30	mSL	10YR 2/1			30-45		2.5YR 2/1		MO	М	45-120	LmS	10YR 5/3		MO	M	45		- ;	1	-0.14	-19.32	3a	3a
											IVIO						IVIO									
281	5	0-40	mSL	10YR 2/1			40-55	mS	10YR 5/3			М	55-70	mS	10YR 5/3			G	55		1	1	-35.14	-26.32	3b	3b
282	6	0-40	LmS	10YR 3/3			40-120	mS	7.5YR 5/6		MO	M									1	1	-26.14	-42.32	3b	3b
289	4	0-35	LmS	10YR 4/1			35-120	SC	10YR 6/2			M							35		1	1	17.86	-17.32	3a	3a
290	5	0-40	HCL	10YR 4/2		FO	40-120	mS	10YR 6/2		FOB	М							40		1	2	-6.14	-22.32	3a	3a
291	4	0-40	Ċ	10YR 4/1		FO	40-120	mS	10YR 6/2		СОВ	М							40		1	3a	-10.14	-26.32	3a	3a
292	3	0-40	Ċ	10YR 4/2		FO	40-60	C	10YR 5/2		MO	P	60-120	ZC	10YR 5/1		МО	Р	40	40	iii	3b	9.86	-9.32	2	3b
						FU							00-120	ZC	1011 5/1		IVIO	r								
293	2	0-30	ZC	10YR 4/1			30-120	ZC	10YR 5/1		MO	P							30	30	III	3b	3.86	-16.32	3a	3b
294	2	0-35	С	10YR 4/1			35-70	Org C	10YR 5/1		MO	Р							35	35	III	3b	5.86	24.68	2	3b
295	4	0-30	C	10YR 4/1			30-70	C	10YR 5/2		MO	P	70-120	Peat	10YR 2/1				30	30	III	3b	8.86	-9.32	2	3b
296	4	0-40	С	10YR 4/1			40-70	С	10YR 5/1		MO	Р	70-120	Peat	10YR 2/1				40	40	III	3b	90.86	-12.32	3a	3b
297	2	0-40	Ċ	10YR 4/1		CO	40-50	Ċ	10YR 2/1			P	50-120	Peat	10YR 2/1						1	3a	136.86	39.68	1	3a
299	3	0-40	C	10YR3/1			40-60	C	101R 2/1		MO	M		C			MO	P	40	60	i	3a 3a	13.86	-2.32	2	3a 3a
								-					60-120		10YR 5/2					60						
300	2	0-30	C	10YR 4/1			30-50	mS	10YR 6/1		MO	M	50-120	mS	5YR 3/2		COB	M	30		1	3a	-20.14	-36.32	3b	3a
301	3	0-50	mSL	10YR 4/2			50-70	LmS	10YR 4/3			CSAB	70-120	LmS	10YR 4/3		MO	FSAB			1	1	6.86	-12.32	3a	3a
302	2	0-40	mSL	10YR 4/2			40-120	mS	10YR 6/6			CSAB									1	1	-10.14	-26.32	3a	3a
303	2	0-35	mSL	10YR 3/2			35-60	LmS	10YR 6/1		COB	M	60-120	mS	7.5YR 5/2		CO	M	35		1	1	-11.14	-26.32	3a	3a
304	4	0-35	LmS	10YR 4/2			35-120	mS	10YR 6/6		COB	М									i	1	-29.14	-45.32	3b	3b
									-				CO 120		100/0 7/1				40		- 1	_				
305	3	0-40	mSL	10YR 2/1			40-60	mS	10YR 6/3		СОВ	M	60-120	mS	10YR 7/1		FO	M	40		1	1	-10.14	-26.32	3a	3a
306	2	0-40	LmS	10YR 2/1			40-50	LmS	2.5Y 5/1		FO	M	50-120	SCL	2.5Y 5/1		VMO	Р	40	50	Ш	1	-3.14	-28.32	3a	3a
307	7	0-60	LmS	10YR 2/1			60-80	mS	10YR 5/3			M	80-120	mS	7.5YR 4/6			M			1	1	-12.14	-30.32	3b	3b
308	5	0-30	LmS	10YR 3/3			30-120	mS	7.5YR 5/6		MO	M									1	1	-32.14	-48.32	3b	3b
309	5	0-35	mSL	10YR 3/1			35-120	mS	10YR 6/2			М							35		1	1	-15.14	-31.32	3b	3b
313	2	0-35	mSL	10YR 3/1			35-120	mS	10YR 6/2			M							35			1	-15.14	-31.32	3b	3b
										2007			CO 18 40									1			3D 4	3U 4
314	2	0-30	mSL		<2CM 5%		30-60	LmS	10YR 6/1	30%		M	60 IMP						30			_	-50.99	-45.92	•	4
315	2	0-30	mSL		<2CM 5%		30-60	LmS	10YR 6/1	30%		M	60 IMP						30		1	1	-50.99	-45.92	4	4
316	2	0-30	mSL	10YR 4/2			30-60	mS	5YR 3/3		FOB	M	60-120	mS	10YR 5/2		MO	M	60		1	1	-20.14	-36.32	3b	3b
317	3	0-40	SCL	10YR 3/1			40-120	mS	10YR 3/1		MO	M									1	1	-10.14	-26.32	3a	3a
318	4	0-30	С	10YR 4/1		CO	30-50	С	10YR 5/1		MO	Р	50-120	mS	10YR 6/1		FO	M	30	30	III	3b	-8.14	-24.32	3a	3a
			-					-			-		===		, =		-				•				- -	

Grade Droughtiness Assessment

Grade

Grade by

Wetness Assesment

																				ess Assesr		Grade	Droughtiness		Grade	Grade by
		Topsoil	- .				Upper Sub						Lower Subs			e			Depth to	cou	Wetness	limit by	MB	MB	limit by	most limiting
 	Altitude	Depth			Stoniness		Depth	Texture		Stoniness	Mottles	Structure	Depth		Colour	Stoniness	Mottles	Structure	Gley	SPL	Class	Wetness	Wheat	Potato	Droughtiness	factor
319	5	0-30	C	10YR 4/1		CO	30-50	C	10YR 5/1		MO	Р	50-120	Peat	10YR 2/1				30	30	Ш	3b	124.86	27.68	1	3b
320	4	0-30	C	10YR 4/1			30-120	C	10YR 5/1		MOB	Р							30	30	Ш	3b	5.86	-12.32	3a	3b
321	3	0-30	C	10YR 4/1			30-120	C	10YR 5/1		MOB	P							30	30	Ш	3b	5.86	-12.32	3a	3b
322	3	0-30	C	10YR 4/1		FO	30-80	C	10YR 5/1		MO	P	80-120	Peat	10YR 2/1				30	30	Ш	3b	73.86	-12.32	3a	3b
323	3	0-35	C	10YR 4/1		FO	35-90	C	10YR 5/1		MO	P	90-120	Peat	10YR 2/1				35	35	III	3b	58.86	-10.32	3a	3b
325	2	0-35	C	10YR 3/1			35-120	C	10YR 4/1		VMO	M							35		- 1	3a	19.36	0.18	2	3a
326	2	0-40	C	10YR 4/2			40-120	С	10YR 5/1		CO	P							40	40	III	3b	9.86	-8.32	2	3b
327	2	0-30	C	10YR 4/2			30-50	C	10YR 5/3		MOB	P	50-120	C	10YR 5/1		MO	P	30	30	III	3b	5.86	-12.32	3a	3b
328	3	0-30	C	10YR 4/1		FO	30-120	С	10YR 5/1		MO	C prism							30	30	III	3b	5.86	-12.32	3a	3b
329	3	0-40	mSL	10YR 2/3			40-70	LmS	10YR 3/3			CSAB	70-120	mS	10YR 4/6		MO	FSAB			1	1	2.86	-11.32	3a	3a
330	2	0-50	LmS	10YR 3/3			50-120	mS	10YR 6/1		FOB	M							50		1	1	-20.14	-36.32	3b	3b
331	3	0-40	mSL	10YR 2/2			40-120	mS	10YR 6/1		COB	М							40		1	1	-10.14	-26.32	3a	3a
332	4	0-30	MCL	10YR 4/2			30-50	c	10YR 5/1		СОВ	Р	50-120	mS	7.5YR 6/6		СОВ	М	30	30	III	3a	-5.14	-21.32	3a	3a
333	3	0-40	mSL	10YR 3/3			40-60	mSL	10YR 5/2		МОВ	М	60-120	LmS	7.5YR 6/6		MO	M	40		1	1	9.86	-8.32	2	2
334	2	0-35	mS	10YR 3/3			35	mS	10YR 6/6		MOB	CSAB									i	1	-32.64	-48.82	3b	3b
335	5	0-30	mSL	10YR 3/3			30-120		7.5YR 6/2		MO	M							30		i	1	-20.14	-36.32	3b	3b
336	5	0-40	mSL	10YR 2/2			40-70		7.5YR 6/2		IVIO	M	70-120	С	2.5Y 5/1		FO	p	40	70	ii	1	3.86	-20.32	3a	3a
338	3	0-40	SCL	10YR 3/1			40-120	mS	10YR 3/1		МО	M	70 120	C	2.51 5/1		10		40	70	i i	1	-35.14	-26.32	3b	3b
339	2	0-40	mSL	101R 3/1			30-120		101R 5/1		FO	MOD							30		- 1	1	-20.14	-36.32	3b	3b
340		0-30	C	101K 4/2				mS C			MOB	P	60-70	Doot	10VD 2/1					20	iii	3b		7.68		3b
	4						30-60		10YR 5/1		IVIOB		60-70	Peat	10YR 2/1				30	30			-12.14		3a	
341	3	0-50	LmS	10YR 4/2			50-120	mS	10YR 6/2			CSAB							50	20		1	-20.14	-36.32	3b	3b
342	2	0-30	C	10YR 4/1			30-120		10YR 5/1		MOB	P							30	30	III	3b	164.86	67.68	1	3b
343	2	0-30	C	10YR 4/1			30-120		10YR 5/1		MOB	Р							30	30	Ш	3b	164.86	67.68	1	3b
344	2	0-30	C	10YR 3/1			30-120	С	10YR 4/1		VMO	М							30		Ш	3a	18.86	-0.32	2	3a
345	2	0-35	C	10YR 4/2			35-50	С	10YR 4/1		CO	Р	50-120	С	10YR 5/1		CO	Р	35	35	Ш	3b	7.86	-10.32	3a	3b
346	2	0-30	HCL	10YR 4/2			30-60	С	10YR 5/2		MOB	Р	60-120	С	10YR 5/1		MO	Р	30	30	Ш	3b	8.86	-9.32	2	3b
347	2	0-35	mSL	10YR 3/2			35-120		7.5YR 5/2		CO	M							35		- 1	1	-15.14	-31.32	3b	3b
348	3	0-40	mSL	10YR 3/3			40-70	mS	10YR 5/3			CSAB	70-120	mS	10YR 5/3		MO	FSAB	70		1	1	-10.14	-26.32	3a	3a
349	2	0-50	mSL	10YR 2/2			50-120	mS	10YR 5/4		FO	CSAB									1	1	-0.14	-16.32	3a	3a
350	2	0-50	LmS	10YR 2/2			50-80	mS	10YR 5/4			CSAB	80-120	SC	2.5.Y 5/1			M	80		1	1	-20.14	-36.32	3b	3b
351	3	0-50	mSL	10YR 3/3			50-120	mS	10YR 6/2		COB	M							50		1	1	-0.14	-16.32	3a	3a
352	4	0-50	mSL	10YR 3/3			50-120	mS	10YR 6/2		COB	M							50		1	1	-0.14	-16.32	3a	3a
353	2	0-40	LmS	10YR 4/3			40-120	mS	7.5YR 5/6		co	M									1	1	-26.14	-42.32	3b	3b
354	3	0-25	LmS	10YR 3/3			25-50	mSL	10YR 3/2			M	50-120	mS	10YR 6/1		CO	M	50		1	1	-15.14	-31.32	3b	3b
357	2	0-30	HCL	10YR 3/1			30-50	LmS	10YR 5/2		MO	M	50-120	mS	10YR 6/2		MOB	M	30		1	2	-13.14	-29.32	3a	3a
358	2	0-30	LmS	10YR 3/1			30-70	mS	10YR 7/3		CO	М			-				30		1	1	-57.14	-48.32	4	4
359	3	0-35	mSL	10YR 3/1			35-120	mS	10YR 5/2		MOB	М							35		1	1	19.86	0.68	2	2
360	4	0-40	C	10YR 3/1			40-120	C	10YR 3/2		VMO	M							55		- 1	3a	20.86	1.68	2	2
361	3	0-50	c	10YR 3/2			50-120	c	10YR 4/2		MO	M							50			3a	20.86	1.68	2	3a
362	2	0-40	C	10YR 3/2			40-120	c	10YR 4/1		MO	P							40	40	iii	3b	9.86	-8.32	2	3b
363	3	0-40	mSL	101R 3/2			35-120		7.5YR 5/2		CO	M							35	40		1	-15.14	-31.32	3b	3b
364	2	0-50	mSL	101R 3/2			50-70	LmS	10YR 6/1		CO	M	70-120	mS	10YR 5/3		МО	М	50		- 1	1	1.86	-12.32	3a	3a
365	3	0-30	LmS	101R 3/3			40-120	mS	10YR 4/4			M	70-120	1113	1011 3/3		IVIO	IVI	30		- 1	1	-26.14	-42.32	3b	3b
366	4	0-40	Lms	10YR 2/2 10YR 2/2			40-120		10YR 4/4			M											-26.14 -26.14	-42.32 -42.32	3b	3b
		0-40						mS			FOB	M							25			1				3b
367	3		LmS	10YR 3/3			35-120		7.5YR 6/4										35			1	-29.14	-45.32	3b	
368	2	0-30	LmS	10YR 4/3			30-120	LmS	10YR 6/6		CB	М										1	-21.14	-40.32	3b	3b
369	3	0-30	mS	10YR 4/4			30-120	mS	10YR 7/1		FB	М							30		ı	1	-35.14	-51.32	3b	3b
370	2	0-35	mSL	10YR 3/2			35-120		7.5YR 6/2		CO	М							35			1	-5.14	-24.32	3a	3a
371	2	0-35	SCL	10YR 4/2			35-120	mS	10YR 7/4		FOB	М							35		- 1	1	-15.14	-31.32	3b	3b
372	2	0-35	LmS	10YR 3/1			35-60	mS	5YR 3/2		_	М	60-120	mS	10YR 6/3		MOB	M	60		1	1	-29.14	-45.32	3b	3b
373	2	0-30	LmS	10YR 3/1			30-70	mS	10YR 7/3		CO	М	70-120	LmS	10YR 7/1		MO	M	30		1	1	-27.14	-48.32	3b	3b
375	4	0-50	mSL	10YR 3/3			50-120	LmS	10YR 3/3			MLSAB									1	1	6.86	-12.32	3a	3a
376	5	0-40	SZL	10YR 4/3			40-120	ZL	10YR 5/4		MO	M									- 1	1	75.86	26.68	1	1
377	5	0-35	mSL	10YR 4/2			35-70	LmS	7.5YR 6/3		COB	M	70-120	mS	10YR 7/1		CO	M	35		1	1	-10.14	-24.32	3a	3a
378	3	0-50	mSL	10YR 3/2			50-90	mS	10YR 5/1		CO	M	90-120	mS	10YR 7/1			M	50		1	1	-0.14	-16.32	3a	3a
379	3	0-35	mSL	10YR 3/2			35-120	mS	7.5YR 5/2		CO	M							35		1	1	-15.14	-31.32	3b	3b
380	3	0-50	mSL	10YR 3/3			50-70	LmS	10YR 7/1			CSAB	70-120	mS	10YR 5/3		MO	FSAB	50		1	1	1.86	-12.32	3a	3a
381	3	0-60	LmS	10YR 4/2			60-120	mS	10YR 5/6			CSAB									1	1	-12.14	-30.32	3b	3b
382	3	0-50	LmS	10YR 4/2			50-120	mS	10YR 6/2			CSAB							50		1	1	-20.14	-36.32	3b	3b
383	2	0-40	mSL	10YR 3/3			40-120	mS	10YR 7/1		FOB	М							40		1	1	-10.14	-26.32	3a	3a
384	4	0-50	mSL	10YR 3/3			50-70	LmS	10YR 6/1		СВ	М	70-120	mS	7.5YR 7/2		MOB	M	70		1	1	1.86	-12.32	3a	3a
385	3	0-35	mSL	10YR 3/3			35-70	LmS	10YR 6/1		FOB	М	70-120	mS	10YR 7/2		MOB	M	35		1	1	-10.14	-24.32	3a	3a
386	2	0-50	LmS	10YR 3/1			50-120	mS	10YR 3/1		MO	M			,2		55				i	1	-20.14	-36.32	3b	3b
387	2	0-35	LmS	10YR 3/1			35-120	mS	10YR 7/3		MO	M							35		i	1	-29.14	-45.32	3b	3b
388	2	0-35	mSL	10YR 3/1			35-50	LmS	101R 7/3		0	M	50-120	mS	10YR 6/2		МОВ	М	50		i	1	-12.14	-43.32	3a	3a
389	3	0-35	mSL	101R 3/1			35-30		7.5YR 5/2		CO	M	30 120	5	20 0/2		55		35		- 1	1	-15.14	-28.32	3b	3b
390	4	0-35	mSL	101K 3/2			35-120		7.5YR 5/2		CO	M							35 35		- 1	1	-15.14	-31.32	3b	3b
392	4	0-30	mSI	10YR 3/3			30-120				COB	M							30			1	-15.14	-31.32	3b	3b
392	3	0-30	mSL	10YR 3/3 10YR 3/3			35-50	LmS	7.5YR 5/2 10YR 6/1		COB	M	50-120	mS	7.5YR 7/2		МОВ	М	35		1	1	-20.14 -12.14	-36.32	30 3a	30 3a
333	3	0-33	IIISL	101K 3/3			33-30	LIIIS	101K 0/1		COB	IVI	30-120	1113	7.5TR 7/2		IVIUB	IVI	33		'	1	-12.14	-20.32	Sd	Sd

Wetness Assesment

Grade Droughtiness Assessment Grade

Grade by

																				ess Asses		Grade	Droughtiness		Grade	Grade by
		Topsoil					Upper Sub						Lower Subs						Depth to		Wetness	limit by	MB	MB	limit by	most limiting
Sample No					Stoniness	Mottles	Depth	Texture		Stoniness	Mottles	Structure	Depth	Texture		Stoniness	Mottles	Structure	Gley	SPL	Class	Wetness	Wheat	Potato	Droughtiness	factor
396	2	0-35	mSL	10YR 2/1			35-60	mS	7.5YR 5/2		FO	M	60-120	mS	10YR 6/1			M	35		1	1	-15.14	-31.32	3b	3b
397	2	0-40	mSL	10YR 2/1			40-60	mS	5YR 4/4		FB	M	60-120	mS	10YR 6/2		FO	M	60		1	1	-10.14	-26.32	3a	3a
398	2	0-35	mSL	10YR 2/1			35-60	mS	7.5YR 5/2		FO	M	60-120	mS	10YR 6/1			М	35		1	1	-15.14	-31.32	3b	3b
399	2	0-35	mSL	10YR 2/1			35-60	mS	7.5YR 5/2		FO	M	60-120	mS	10YR 6/1			M	35		i	1	-15.14	-31.32	3b	3b
400				10YR 2/1							co	M					со	M	35		- :	1				3a
	2	0-35	mSL				35-60	LmS	10YR 7/2				60-120	mS	5YR 6/3		CO	IVI					-11.14	-26.32	3a	
401	1	0-35	mSL	10YR 2/1			35-120	mS	10YR 6/2		COB	M							35		ı	1	-15.14	-31.32	3b	3b
402	2	0-50	Org mSL	10YR 2/1			50-120	mS	10YR 5/3		COB	M							50		1	1	54.86	38.68	1	1
404	2	0-30	LmS	10YR 3/1			30-120	mS	10YR 6/2		CO	M							30		1	1	-32.14	-48.32	3b	3b
405	2	0-35	mS	10YR 3/2			35-120	mS	5YR 5/3		COB	M							35		1	1	-32.64	-48.82	3b	3h
406	1	0-35		10YR 2/1			40-120	Org C	10YR 4/1		CO	M							40		i	3a	159.86	80.68	1	1
											CO		50.400		4000 610											-
407	1	0-35	mSL	10YR 3/1			35-50	HCL	5YR 4/4			M	50-120	mS	10YR 6/2		FO	M	50		1	1	-1.64	-17.82	3a	3a
408	3	0-20	HCL	10YR 4/2			20-120	HCL	10YR 5/2		MO	P							20	20	III	3b	0.86	-19.32	3a	3b
409	2	0-35	HCL	10YR 4/2			35-70	C	10YR 5/1		MOB	P	70-120	mSL	10YR 4/3		CO	M	35	35	III	3b	31.36	-6.82	2	3b
410	3	0-35	SCL	10YR 4/2			35-50	SCL	10YR 6/1		MO	M	50-120	mS	10YR 4/6		MB	M	35		1	1	-3.14	-19.32	3a	3a
413	2	0-30	mSL	10YR 2/1			30-40	mSL	10YR 6/2			М	40-120	mS	10YR 6/2		CO	M	40		1	1	-12.14	-28.32	3a	3a
414	2	0-35	LmS	10YR 2/1			35-20	mS	10YR 5/2			M										1	-71.14	-66.32	4	4
																									-	
415	1	0-30	mSL	10YR 2/1			30-120	mS	10YR 6/2			M									1	1	-20.14	-36.32	3b	3b
416	2	0-35	LmS	10YR 3/3			35-120	mS	10YR 6/2			M									1	1	-29.14	-45.32	3b	3b
417	1	0-35	LmS	10YR 3/3			35-120	mS	7.5YR 4/6			M									1	1	-29.14	-45.32	3b	3b
418	3	0-30	LmS	10YR 3/2			30-120	mS	10YR 5/6		CO	М									1	1	-32.14	-48.32	3b	3b
419	2	0-25	HCL	10YR 4/2			25-120	c	10YR 5/1		MO	Р							25	25	Ш	3b	6.36	-11.82	3a	3a
420	1	0-30	HCL	10YR 4/2			30-120	c	10YR 5/1		MO	Р							25	25	111	3b	8.86	-9.32	2	2
												-														
421	1	0-40	MZCL	10YR 3/2			40-70	Org HCL	10YR 3/1		CO	M	70-120		10YR 5/1		CO	Р	70	70	II.	2	123.86	44.68	1	1
422	1	0-45	MZCL	10YR 3/2			45-80	Org HCL	10YR 4/1			M	80-120	Org C	10YR 4/1		CO	Р	80	80	1	1	119.36	40.18	1	1
423	3	0-35	mSL	10YR 4/2			25-120	Ms	10YR 5/6			M									1	1	-15.14	-31.32	3b	3b
424	2	0-25	HCL	10YR 4/2			25-120	Ċ	10YR 5/1		MO	P							25	25	III	3b	6.36	-11.82	3a	3b
425	2	0-25	HCL	10YR 4/2			25-120	Ċ	10YR 5/1		MO	P							25	25	III	3b	6.36	-11.82	3a	3b
												-														
426	2	0-25	HCL	10YR 4/2			25-120	Ċ	10YR 5/1		MO	Р							25	25	Ш	3b	6.36	-11.82	3a	3b
427	2	0-25	HCL	10YR 4/2		FO	25-120	C	10YR 4/1		MO	Р							25	25	III	3b	6.36	-11.82	3a	3b
428	1	0-35	HCL	10YR 4/2			35-50	Org MCL	10YR 4/3			M	50-120	Org C	10YR 4/1		MO	P	50	50	II.	3a	124.86	45.68	1	3a
429	2	0-25	HCL	10YR 4/2		FO	25-120	С	10YR 4/1		MO	P							25	25	III	3b	6.36	-11.82	3a	3b
430	2	0-25	HCL	10YR 4/2		FO	25-120	С	10YR 4/1		MO	P							25	25	III	3b	6.36	-11.82	3a	3b
431	3	0-25	HCL	10YR 4/2			25-120	c	10YR 5/1		MO	Р							25	25	III	3b	6.36	-11.82	3a	3b
													40 400		4000 5 /4											
432	3	0-30	C	10YR 4/2			30-40	MZCL	10YR 6/1		MO	M	40-120	С	10YR 5/1		MO	Р	30	40	III	3b	9.86	-8.32	2	3b
433	2	0-35	C	10YR 3/2		FO	35-120	Org C	10YR 4/1		CO	Р							35	35	Ш	3b	85.86	24.68	1	3b
434	2	0-35	C	10YR 4/2			35-120	C	10YR 5/1		MO	P							35	35	III	3b	7.86	-10.32	3a	3b
435	2	0-30	HCL	10YR 4/2			30-120	ZL	10YR 5/3		MO	P							30	30	III	3b	26.86	-1.32	2	3b
436	3	0-30	HCL	10YR 4/2			30-120	С	10YR 5/1		MO	P							30	30	III	3b	8.86	-9.32	2	3b
437	1	0-35	c	10YR 4/2			35-120	C	10YR 5/2		MO	D							35	35	III	3b	7.86	-10.32	3a	3h
438		0-33	HCL					C			MO								30	30	111	3b	8.86	-9.32	2	3b
	3			10YR 4/2			30-120		10YR 5/1			Р									***				=	
439	2	0-40	HCL	10YR 3/2			40-120	Org C	10YR 4/1		MO	Р							40	40	Ш	3b	86.86	25.68	1	3b
440	1	0-30	MCL	10YR 3/2			30-120	Org C	10YR 4/1		MO	P							30	30	III	3b	91.86	30.68	1	3b
441	2	0-30	HCL	10YR 4/2			30-120	C	10YR 6/1		MO	P							30	30	III	3b	8.86	-9.32	2	3b
442	2	0-35	C	10YR 3/2			35-60	C	10YR 4/1		CO	P	60-120	Org C	10YR 5/1		MO	P	35	35	III	3b	61.86	-0.32	2	3h
443	2	0-30	Č	10YR 4/2			30-120	Č	10YR 5/1		MO	D		8-					30	30	III	3h	5.86	-12.32	3a	3b
444		0-40	-								MO	P								40					1	
	3		HCL	10YR 3/2			40-120	Org C	10YR 4/1										40		III	3b	86.86	25.68	_	3b
445	1	0-30	HCL	10YR 4/2			30-120	С	10YR 5/1		MO	P							30	30	Ш	3b	8.86	-9.32	2	3b
446	4	0-40	C	10YR 4/2		CO	40-70	C	10YR 5/1		MO	P	70-120	Org C	10YR 4/1		MO	Р	40	40	III	3b	54.86	-8.32	2	3b
447	3	0-30	HCL	10YR 4/2			30-120	C	10YR 6/1		MO	P							30	30	III	3b	8.86	-9.32	2	3b
448	3	0-35	HCL	10YR 3/2			35-70	С	10YR 5/2		MO	P	70-120	Org C	5YR 2.5/2		MO	Р	35	35	III	3b	56.36	-6.82	2	3b
449	2	0-35	HCL	10YR 3/2			35-70	č	10YR 5/2		MO	P	70-120		5YR 2.5/2		MO	P	35	35	III	3b	56.36	-6.82	2	3b
450	3	0-30	C	10YR 5/2		CO	30-120	c	10YR 5/1		CO	P	,0 120	0.80	5111 2.5, 2				30	30	III	3b	5.86	-12.32	3a	3b
			-	101K 5/2		CO	30-120	C	101K 3/1		CO	r							30	30	1111	30	3.00	-12.52	3d	ວນ
451			ricultural																							
452	3	0-35	HCL	10YR 4/2			35-120	С	10YR 4/1		CO	P							35	35	Ш	3b	11.36	-6.82	2	3b
453	3	0-25	C	10YR 4/2			25-70	С	10YR 5/1		MO	P	70-120	Org C	10YR 4/1		CO	Р	25	25	III	3b	48.86	-14.32	3a	3b
454	3	0-25	HCL	10YR 4/2			25-120	C	10YR 6/1		MO	P		-					25	25	III	3b	6.36	-11.82	3a	3b
455	3	0-35	MZCL	10YR 3/2			35-120	c	10YR 5/1		MO	P							35	35	III	3b	14.86	-3.32	2	3h
456	3	0-35	HCL	101R 3/2			25-120	C	101R 3/1		MO	D							25	25	111	3b	6.36	-11.82	2 3a	3b

457	3	0-30	HCL	10YR 4/2			30-120	Ċ	10YR 4/1		MO	Р							30	30	Ш	3b	8.86	-9.32	2	3b
458	4	0-40	HCL	10YR 2/2			40-60	Org C	10YR 3/2		FO	M	60-120	mS	10YR 3/4		FO	M			I	2	20.86	9.68	2	2
459	4	0-40	HCL	10YR 4/2			40-120	mS	10YR 6/1			M									1	2	-6.14	-22.32	3a	3a
460	2	0-35	HCL	10YR 4/2			35-50	С	10YR 5/1		CO	Р	50-120	ZC	7.5YR 5/1		MO	Р	35	35	III	3b	11.36	-8.82	2	3b
461	4	0-35	MZCL	10YR 3/2			35-60	mS	10YR 2/1			M	60-120	mS	7.5YR 5/6		-	M			ï	1	-8.14	-24.32	3a	3a
462		0-33	MZCI									M						M			- :		48.86	44.68	1	3a 1
	5			10YR 3/2			40-70		10YR 2/1			***	70-120	mS	10YR 6/1						1	1			_	_
463	3	0-35	mSL	10YR 2/1			35-60		7.5YR 5/2		FO	M	60-120	mSL	10YR 6/6		FO	M			1	1	24.86	-18.32	3a	3a
464	3	0-35	HCL	10YR 4/2			35-50	Org C	10YR 4/1			P	50-120	mS	10YR 6/4		MB	M	35	35	III	3b	12.36	-3.82	2	3b
465	2	0-30	HCL	10YR 4/1		FO	30-120	Org C	10YR 5/1		MO	P							30	30	III	3b	91.86	30.68	1	3b
466	3	0-45	LmS	10YR 4/4			45-80	LmS	10YR 7/1			M	80-120	mSL	10YR 6/4		FO	М			1	1	4.86	-34.32	3b	3b
467	2	0-30	mS	10YR 3/3			30-50	LmS	10YR 7/1			M	50-120	mSL	10YR 6/3		FO	M			1	1	10.86	-31.32	3b	3b
	-	- 50					50										. 0				*	-				

Wetness Assesment

Grade Droughtiness Assessment Grade

Grade by

																				ess Asses		Grade	Droughtiness		Grade	Grade by
Comple No	Altitudo	Topsoil	Touturo	Colour	Stoniness		Upper Sub		Colour	Ctoninger	Mottles		Lower Sub	Texture	Colour	Stoniness	Mottles	Ctrusturo	Depth to	SPL	Wetness	limit by	MB Wheat	MB	limit by	most limiting factor
Sample No 468	Aititude 1	Depth 0-40	Texture mSL	10YR 2/1	Stoniness	iviotties	Depth 40-60	Texture LmS	7.5YR 5/2	Stoniness	Mottles	M	Depth 60-120	mSL	10YR 6/6	Stoniness	iviotties	Structure M	Gley	SPL	Class	Wetness 1	28.86	Potato -14.32	Droughtiness 3a	3a
469	2	0-30	mSL	10YR 2/1			30-70	LmS	10YR 7/1			M	70-120	SCL	5YR 5/3		МО	M	70		i	1	10.86	-28.32	3a	3a
470	2	0-40	mSL	10YR 2/1			40-50	LmS	7.5YR 5/2		FO	М	50-120	mSL	10YR 6/4		CO	M	50		1	1	33.86	-8.32	2	2
471	4	0-35	HCL	10YR 4/2		FO	35-70	C	10YR 5/1		CO	P	70-120	Org C	10YR 2/2			M	35	35	III	3b	56.36	-6.82	2	3b
472	3	0-35	HCL	10YR 5/3		FO	35-120	C	10YR 5/1		CO	P							35	35	III	3b	11.36	-6.82	2	3b
473	3	0-30	LmS	7.5YR 3/4			30-60	mS	7.5YR 7/1			M	60-120	LmS	7.5YR 8/1			M			- 1	1	-26.14	-46.32	3b	3b
474 475	2	0-30	mSL	7.5YR 4/4			30-70	LmS	10YR 6/4		60	M M	70-120	mS	10YR 7/1			M	25		!	1	-14.14	-28.32	3a 3b	3a
475 476	0 2	0-35 0-35	LmS mS	7.5YR 2/1 7.5YR 4/2			35-80 35-60	LmS LmS	7.5YR 5/2 10YR 7/1		со	M	80-120 60-120	LmS mSL	10YR 7/1 10YR 6/4		со	M M	35 60		- !	1	-19.14 7.36	-38.32 -35.82	3b 3b	3b 3b
476	1	0-50	mS	7.51R 4/2 7.5YR 3/3			50-120	LmS	7.5YR 6/2		со	M	00-120	IIISL	1011 0/4		CO	IVI	50		- 1	1	-18.14	-35.82	3b	3b
478	2	0-40	LmS	7.5YR 3/1			40-70	LmS	10YR 6/1		MO	M	70-120	MZCL	5YR 5/3		co	М	40		i	1	2.86	-36.32	3b	3b
479	2	0-30	mSL	10YR 2/1			30-50	mSL	7.5YR 5/2		FO	М	50-120	LmS	5YR 6/2		CO	М	50		1	1	2.86	-16.32	3a	3a
480	2	0-35	HCL	10YR 4/2			35-120	С	10YR 5/1		MO	Р							35	35	III	3b	11.36	-6.82	2	3b
481	1	0-30	LmS	10YR 4/4			30-70	mS	10YR 8/1			M	70-120	mS	10YR 6/3		CO	M	70		1	1	-32.14	-48.32	3b	3b
482	1	0-40	LmS	10YR 3/2			40-80	mS	10YR 8/1			M	80-120	LmS	10YR 7/4		MO	M	80		1	1	-22.14	-42.32	3b	3b
483	2	0-40	LmS	7.5YR 4/4			40-120	mS	10YR 8/1			M									- 1	1	-26.14	-42.32	3b	3b
484	2	0-50	LmS	7.5YR 3/3			50-60	mS	10YR 6/4			M	60-120	mS	10YR 6/3		CO	M	60		!	1	-20.14	-36.32	3b	3b
485	1	0-30	mSL	7.5YR 3/4			30-60	mS	10YR 8/1		140	M	60-120	mS	7.5YR 7/1		CO	M	60		- !	1	-20.14	-36.32	3b	3b
486 487	2	0-35 0-30	mSL mSL	7.5YR 3/4 7.5YR 2/1			30-90 30-90	LmS LmS	10YR 7/4 7.5YR 7/1		MO FO	M M	90-120 90-120	mS LmS	7.5YR 6/4 5YR 6/1		CO	M M	30 90		- 1	1	-8.14 -9.14	-24.32 -28.32	3a 3a	3a 3a
488	2	0-35	LmS	10YR 2/2			35-70	mS	7.5YR 3/4		10	M	70-120	mS	10YR 6/4		СВ	M	70		- 1	1	-29.14	-45.32	3b	3b
489	2	0-35	LmS	10YR 2/2			35-70	mS	10YR 6/4		МО	M	70 120	1113	20111 0/ 1		0.5		35		i	1	-54.14	-45.32	4	4
490	3	0-30	HCL	10YR 4/2			30-50	C	10YR 4/1		MOB	P	50-120	Ċ	10YR 5/1		MO	P	30	30	III	3b	8.86	-9.32	2	3b
491	2	0-40	mSL	10YR 2/2			40-120	LmS	7.5YR 5/2		FOB	M									1	1	-1.14	-20.32	3a	3a
492	1	0-35	mSL	7.5YR 2/1			35-60	mSL	7.5YR 5/4		COB	M	60-120	LmS	5YR 5/2		COB	M			1	1	8.86	-9.32	2	2
493	1	0-45	mSL	7.5YR 2/1			45-120	mSL	7.5YR 4/4			M									1	1	40.86	-1.32	2	2
494	2	0-25	mSL	10YR 2/2			25-45	mSL	10YR 4/3		COB	M	45-120		7.5YR 4/1		COB	M	45		1	1	30.36	-2.82	2	2
495	2	0-40	mSL	7.5YR 3/2			40-80	LmS	7.5YR 6/1		FOB	M	80-120	mSL	10YR 7/1		MOB	M	80		1	1	18.86	-20.32	3a	3a
496	2	0-50	mSL	7.5YR 3/2			50-70	Org C	7.5YR 2/1		500	M	70-120	Org C	5YR 6/1		COB	M	70		!	1	76.86	15.68	1	1
497 498	3 2	0-30 0-30	mSL mSL	7.5YR 2/1 10YR 3/2			30-50 30-90	LmS mS	10YR 6/2 10YR 6/4		FOB COB	M M	50-120 90-120	Org HCL mSZL	5YR 6/2 10YR 6/2		CO MOB	M M	50 30		- !	1	88.86 -2.14	9.68 -36.32	2 3b	2 3b
499	2	0-30	HCL	101R 3/2			30-30	HCL	10YR 5/2		COB	P	30-120	IIIJZL	1011 0/2		IVIOD	IVI	30	30	iii	3b	6.86	-13.32	3a	3b
500	2	0-30	HCL	10YR 4/2			30-120	HCL	10YR 5/2		co	P							30	30	111	3b	6.86	-13.32	3a	3b
501	1	0-40	HCL	10YR 3/2			40-70	HCL	10YR 4/1		МО	Р	70-120	Org C	10YR 5/1		CO	Р	40	40	Ш	3b	57.86	-7.32	2	3b
502	2	0-35	HCL	10YR 3/2			35-60	С	10YR 4/1		co	P	60-120		10YR 4/1		CO	P	35	35	III	3b	65.36	3.18	2	3b
503	2	0-40	LmS	10YR 3/2			35-120	mS	7.5YR 4/6		COB	M									1	1	-26.14	-42.32	3b	3b
504	2	0-30	LmS	10YR 3/2			35-120	mS	10YR 6/4		COB	M									1	1	-32.14	-48.32	3b	3b
Α	2	0-30	HCL	10YR 4/2			30-50	C	10YR 5/2		MO	P	50-120	LmS	10YR 7/1		MO	M	30	30	Ш	3b	1.86	-17.32	3a	3b
В	2	0-30	HCL	10YR 4/2			30-120	C	10YR 5/2		MO	P							30	30	111	3b	8.86	-9.32	2	3b
C D	2	0-30	mSL HCL	10YR 4/3 10YR 3/2		co	30-120 35-120	LmS Org C	10YR 7/1 10YR 4/1		MOB MO	M P							35	35		1 3b	-9.14 89.36	-28.32 28.18	3a 1	3a 3b
F	2	0-35 0-30	HCL	10YR 3/2 10YR 3/2		CO	30-80	Org C	10YR 4/1 10YR 4/1		MO	P	80-120	С	10YR 6/1		co	Р	35 35	35	111	3b	55.86	30.68	1	3b
F	3	0-35	HCL	10YR 4/2			35-120	HCL	10YR 5/1		MO	Р	00 120	C	10111 0/1		co		35	35	111	3b	9.86	-10.32	3a	3b
G	2	0-30	HCL	10YR 4/2			30-120	HCL	10YR 5/1		MO	Р							30	30	111	3b	6.86	-13.32	3a	3b
н	3	0-35	HCL	10YR 4/2			35-120	HCL	10YR 5/1		МО	P							35	35	III	3b	9.86	-10.32	3a	3b
1	4	0-35	HCL	10YR 4/2			35-120	HCL	10YR 5/1		MO	P							35	35	III	3b	9.86	-10.32	3a	3b
J	2	0-30	C	10YR 3/1			30-70	C	10YR 5/1		MO	P	70-120	Org C	10YR 4/1		CO	P	30	30	III	3b	50.86	-12.32	3a	3b
K	1	0-25	HCL	10YR 4/2			25-120	C	10YR 4/1		MO	Р									1	2	6.36	-11.82	3a	3a
L	3	0-35	LmS	10YR 3/3			40-60	mS	10YR 6/1		COB	M	60-120	LmS	7.5YR 6/3		MO	M	40		- 1	1	-23.14	-43.32	3b	3b
M	3	0-45	LmS	10YR 4/3			35-70	LmS	10YR 6/2		co	M	70-120	mSL	10YR 6/2		CO	M	35		1	1	9.86	-34.32	3b	3b
N O	3	0-40	LmS	10YR 3/2			40-60	mSL	10YR 4/6		FO FOR	M	60-120	LmS	10YR 6/1		FO	P	70			1	-42.14	-33.32	3b	3b
D	3 2	0-40 0-30	LmS LmS	10YR 3/2 7.5YR 3/2			40-60 30-60	mSL LmS	10YR 5/1 10YR 8/1		FOB	M M	60-120 60-120	mSL SCL	7.5YR 6/2 5YR 6/2		MO MO	M P	70 60	60	1	1	-6.14 -9.14	-24.32 -36.32	3a 3b	3a 3b
0	3	0-30	LmS	10YR 2/1			40-60	LmS	7.5YR 5/2		со	M	60-120	SCL	10YR 6/1		MO	P	40	60	"	1	-9.14 -5.14	-30.32	3b	3b
R	3	0-40		10YR 2/1			40-70	LmS	10YR 6/6		FO	M	70-120		7.5YR 6/2		MO	M	70	-	ï	1	7.86	-36.32	3b	3b
**	2.40								,0			***			,-		****		• •		•	-				

Appendix 4b – Trial Pit Descriptions

Sample Point No. 41		
Horizon 1	0-30cm Very dark greyish brown loam.	(10YR 3/2) medium sandy silty
Horizon 2	30-50cm Very dark greyish brow with a medium angular blocky st biopores	
Horizon 3	50-120cm Grey (10YR 6/1) loamy platy structure, firm consistence Very little evidence of roots or bi	, and many ochreous mottles.
Pictures		
Horizon 1	Horizon 2	Horizon 3
Slowly permeable layer	Not Present	I
Gleying	Starts at 50cm evidenced by grey	colours and ochreous mottles
Wetness Class	1	
Wetness limitation	1	
MB Wheat	8.90	
MB potatoes	-10.18	
Droughtiness Limitation	2	

Sample Point No. 60										
Horizon 1	0-50cm Very dark grey (10YR 3/1	.) medium sandy loam.								
Horizon 2	50-120cm Greyish brown (10YR 5/2) medium sand with a weak									
	fine to medium subangular blocky structure good evidence o									
	rooting									
Horizon 3	Not present									
Pictures		,								
Horizon 1	Horizon 2	Horizon 3								
		Not present								
Slowly permeable layer	Not Present									
Gleying	Starts at 50cm evidenced by grey	colours and ochreous mottles								
Wetness Class	1									
Wetness limitation	1									
MB Wheat	9.86									
MB potatoes	-6.32									
Droughtiness Limitation	2									

Horizon 2	0-30cm Very dark greyish brown 30-60cm Grey (10YR 5/1) sandy c structure, some evidence of root ochreous and black mottles evide	clay loam with a coarse prismatic							
5	structure, some evidence of root	•							
Horizon 3									
	60-120cm Reddish Brown (5YR 5/4) medium sand with a coarse angular blocky structure and common black mottles. Very little evidence of rooting or biopores.								
Pictures									
Horizon 1	Horizon 2	Horizon 3							
	Starts at 30cm evidence by coars mottles evidencing wetness and								
	Starts at 30cm evidenced by grey	·							
, ,	III								
Wetness limitation 2	2								
MB Wheat	6.86								
MB potatoes -	-16.32								
Droughtiness Limitation 2	2								

Sample Point No. 119									
Horizon 1	0-30cm Dark greyish brown (10Y	R 4/2) medium sandy loam.							
Horizon 2	30-60cm Grey (10YR 5/4) medium sand with a medium platy								
	(laminate) structure, evidence of	frooting and biopores. Many							
	ochreous and black mottles.								
Horizon 3	Not present								
Pictures									
Horizon 1	Horizon 2	Horizon 3							
Slowly permeable layer	Not Present	Not present							
Slowly permeable layer	Not Present								
Gleying	Not present								
Wetness Class	I								
Wetness limitation	1								
MB Wheat	-20.14								
MB potatoes	-36.32								
Droughtiness Limitation	3b								

Sample Point No. 122							
Horizon 1	0-35cm Very dark grey (10YR 3/1	.) clay.					
Horizon 2	30-70cm Black (10YR 2/1) peat – very fibrous.						
Horizon 3	70-120cm Light grey (2.5Y 7/1) medium sand with a coarse						
	angular blocky structure and few	ochreous mottles					
Pictures							
Horizon 1	Horizon 2	Horizon 3					
		No photo					
Slowly permeable layer	Not Present						
Gleying	Not present						
Wetness Class	1						
Wetness limitation	3a						
MB Wheat	100.36						
MB potatoes	98.18						
Droughtiness Limitation	1						

Sample Point No. 153										
Horizon 1	0-35cm Very dark grey (10YR 3/1	.) medium sandy loam.								
Horizon 2	35-120cm Light grey (10YR 7/2) medium sand with a coarse									
	angular blocky structure, evidence of rooting and biopores. Mar									
	ochreous mottles.									
Horizon 3	Not present									
Pictures										
Horizon 1	Horizon 2	Horizon 3								
Cloudy normandal layer	Not Present	Not present								
Slowly permeable layer	Not Present									
Gleying	Starts at 35cm evidenced by grey	colours and ochreous mottles								
Wetness Class	I									
Wetness limitation	1									
MB Wheat	-15.14									
MB potatoes	-31.32									
Droughtiness Limitation	3a									

Sample Point No. 181										
Horizon 1	0-35cm Dark greyish brown (10YR 4/2) silty clay.									
Horizon 2	35-70cm Dark grey (2.5Y 4/1) clay with a coarse prismatic									
	structure, some evidence of rooting and very few biopores. Ma									
	ochreous mottles evident									
Horizon 3	70-120cm Grey (2.5Y 5/1) clay with a coarse angular blocky									
	structure and many mottles. Ver	ry little evidence of rooting or								
	biopores.									
Pictures										
Horizon 1	Horizon 2	Horizon 3								
Slowly permeable layer	Starts at 35cm evidence by coars evidencing wetness and less than	•								
Gleying	Starts at 35cm evidenced by grey	colours and ochreous mottles								
Wetness Class	III									
Wetness limitation	3b									
MB Wheat	7.86									
MB potatoes	-10.32									
Droughtiness Limitation	2									

Sample Point No. 245									
Horizon 1	0-30cm Very dark brown (10YR 2	2/2) medium sandy loam.							
Horizon 2	30-120cm Light grey (10YR 7/2) medium sand with a coarse								
	angular blocky structure, some evidence of rooting and very fe								
	biopores. Many ochreous mottles evident								
Horizon 3	Not present								
Pictures									
Horizon 1	Horizon 2	Horizon 3							
		Not Present							
Slowly permeable layer	Not Present								
Gleying	Starts at 30cm evidenced by grey	colours and ochreous mottles							
Wetness Class	1								
Wetness limitation	1								
MB Wheat	-20.14								
MB potatoes	-36.32	·							
Droughtiness Limitation	3b	·							

Sample Point No. 328								
Horizon 1	0-30cm Dark grey (10YR 4/1) clay	with few ochreous mottles.						
Horizon 2	35-70cm Dark grey (10YR 5/1) clay with a coarse prismatic structure, some evidence of rooting and very few biopores. Many ochreous mottles evident							
Horizon 3	Not Present							
Pictures								
Horizon 1	Horizon 2	Horizon 3						
		Not Present						
Slowly permeable layer	Starts at 30cm evidenced by coal evidencing wetness and less than							
Gleying	Starts at 30cm evidenced by grey							
Wetness Class	III	, colouis and comedus mottles						
Wetness limitation	3b							
MB Wheat	5.86							
MB potatoes	-12.32							
Droughtiness Limitation	2							

				ANALYTI	CAL REPORT						
Report Number Date Received Date Reported Project Reference Order Number	73253-23 W250 AMET PROPERTY 24-MAY-2023 HENWICK BARN 05-JUN-2023 BULWICK SOIL CORBY PEGASUS NORTHANTS NN17 3DU										
Laboratory Reference		SOIL630225	SOIL630226								
Sample Reference		TWEEN 6	TWEEN 118 SS								
Determinand	Unit	SOIL	SOIL								
Coarse Sand 2.00-0.63mm	% w/w	1	0								
Medium Sand 0.63-0.212mm	% w/w	8	43								
Fine Sand 0.212-0.063mm	% w/w	9	42								
Silt 0.063-0.002mm	% w/w	32	7								
Clay <0.002mm	% w/w	50	8								
Textural Class **		С	LmS								
Notes											
Analysis Notes Document Control	The sample submitted The results as reported The results are presented This test report sha	ted relate only to ented on a dry m	the item(s) sub atter basis unle	mitted for testing ss otherwise stip	ulated.	oval of the la	boratory.				
Reported by	** Please see the attached document for the definition of textural classes. *** ** ** ** ** ** ** ** ** ** ** ** *										

Technical Information

ADAS (UK) Textural Class Abbreviations

The texture classes are denoted by the following abbreviations:

Sandy clay	Silty clay	Clay	Silt clay loam	Clay loam	Sandy clay loam	Silt loam	Sandy Silt loam	Sandy loam	Loamy sand	Sand	Class
SC	ZC	С	ZCL	CL	SCL	ZL	SZL	SL	LS	S	Code

of sand fraction may be indicated by the use of prefixes, thus:

vf Very Fine (more than 2/3's of sand less than 0.106 mm) For the sand, loamy sand, sandy loam and sandy silt loam classes the predominant size

- Fine (more than 2/3's of sand less than 0.212 mm) Coarse (more than 1/3 of sand greater than 0.6 mm)
- C
- Medium (less than 2/3's fine sand and less than 1/3 coarse sand).

indicated as follows: The subdivisions of clay loam and silty clay loam classes according to clay content are

- medium (less than 27% clay) heavy (27-35% clay)

Organic soils i.e. those with an organic matter greater than 10% will be preceded with a letter O.

letter P Peaty soils i.e. those with an organic matter greater than 20% will be preceded with a

				ANALYTI	CAL REPORT						
Report Number Date Received Date Reported Project Reference Order Number	73254-23 W250 AMET PROPERTY 24-MAY-2023 HENWICK BARN 05-JUN-2023 BULWICK SOIL CORBY PEGASUS NORTHANTS NN17 3DU										
Laboratory Reference		SOIL630227	SOIL630228								
Sample Reference		TWEEN 13	TWEEN 118								
Determinand	Unit	SOIL	SOIL								
Coarse Sand 2.00-0.63mm	% w/w	0	0								
Medium Sand 0.63-0.212mm	% w/w	17	47								
Fine Sand 0.212-0.063mm	% w/w	27	25								
Silt 0.063-0.002mm	% w/w	30	15								
Clay <0.002mm	% w/w	26	13								
Organic Matter LOI	% w/w	6.7	2.8								
Textural Class **		MCL	mSL								
Notes								_			
Analysis Notes Document Control Reported by	The sample submitted was of adequate size to complete all analysis requested. The results as reported relate only to the item(s) submitted for testing. The results are presented on a dry matter basis unless otherwise stipulated. This test report shall not be reproduced, except in full, without the written approval of the laboratory. ** Please see the attached document for the definition of textural classes. Myles Nicholson										
	Natural Resource Ma Coopers Bridge, Bra	anagement, a tra			ic Ltd.						

Tel: 01344 886338 Fax: 01344 890972 email: enquiries@nrm.uk.com

Technical Information

ADAS (UK) Textural Class Abbreviations

The texture classes are denoted by the following abbreviations:

Sandy clay	Silty clay	Clay	Silt clay loam	Clay loam	Sandy clay loam	Silt loam	Sandy Silt loam	Sandy loam	Loamy sand	Sand	Class
SC	ZC	С	ZCL	CL	SCL	ZL	SZL	SL	LS	S	Code

of sand fraction may be indicated by the use of prefixes, thus:

vf Very Fine (more than 2/3's of sand less than 0.106 mm) For the sand, loamy sand, sandy loam and sandy silt loam classes the predominant size

- Fine (more than 2/3's of sand less than 0.212 mm) Coarse (more than 1/3 of sand greater than 0.6 mm)
- C
- Medium (less than 2/3's fine sand and less than 1/3 coarse sand).

indicated as follows: The subdivisions of clay loam and silty clay loam classes according to clay content are

- medium (less than 27% clay) heavy (27-35% clay)

Organic soils i.e. those with an organic matter greater than 10% will be preceded with a letter O.

letter P Peaty soils i.e. those with an organic matter greater than 20% will be preceded with a

			ANALYT	ICAL REPORT								
Report Number Date Received Date Reported Project Reference Order Number Laboratory Reference	73255-23 24-MAY-2023 06-JUN-2023 SOIL PEGASUS	SOIL630229	W250 AMET PROPE HENWICK BA BULWICK CORBY NORTHANTS NN17 3DU	HENWICK BARN BULWICK CORBY NORTHANTS								
Sample Reference		TWEEN 41										
Determinand	Unit	SOIL										
Coarse Sand 2.00-0.63mm	% w/w	2										
Medium Sand 0.63-0.212mm	% w/w	11										
Fine Sand 0.212-0.063mm	% w/w	25										
Silt 0.063-0.002mm	% w/w	15										
Clay <0.002mm	% w/w	13										
Neutralising Value as CaCO3 eq.	% w/w	4.8										
Neutralising Value as CaO eq.	% w/w	2.7										
Textural Class **		mSZL										
Notes												
Analysis Notes Document Control	The results as report The results are presults test report sha	ed was of adequate size ted relate only to the iten ented on a dry matter ba all not be reproduced, e	n(s) submitted for testing sis unless otherwise sti except in full, without	g. pulated. the written approv	al of the laboratory.							
Reported by	** Please see the attached document for the definition of textural classes. **Myles Nicholson Natural Resource Management, a trading division of Cawood Scientific Ltd. Coopers Bridge, Braziers Lane, Bracknell, Berkshire, RG42 6NS Tel: 01344 886338 Fax: 01344 890972 email: enquiries@nrm.uk.com											

Technical Information

ADAS (UK) Textural Class Abbreviations

The texture classes are denoted by the following abbreviations:

Sandy clay	Silty clay	Clay	Silt clay loam	Clay loam	Sandy clay loam	Silt loam	Sandy Silt loam	Sandy loam	Loamy sand	Sand	Class
SC	ZC	С	ZCL	CL	SCL	ZL	SZL	SL	LS	S	Code

of sand fraction may be indicated by the use of prefixes, thus:

vf Very Fine (more than 2/3's of sand less than 0.106 mm) For the sand, loamy sand, sandy loam and sandy silt loam classes the predominant size

- Fine (more than 2/3's of sand less than 0.212 mm) Coarse (more than 1/3 of sand greater than 0.6 mm)
- C
- Medium (less than 2/3's fine sand and less than 1/3 coarse sand).

indicated as follows: The subdivisions of clay loam and silty clay loam classes according to clay content are

- medium (less than 27% clay) heavy (27-35% clay)

Organic soils i.e. those with an organic matter greater than 10% will be preceded with a letter O.

letter P Peaty soils i.e. those with an organic matter greater than 20% will be preceded with a

ANALYTICAL REPORT

Report Number 77369-23 W250 AMET PROPERTY

Date Received 26-JUN-2023 HENWICK BARN

 Date Reported
 26-30N-2023
 HENWICK BARK

 Date Reported
 12-JUL-2023
 BULWICK

 Project
 SOIL
 CORBY

 Reference
 PEGASUS
 NORTHANTS

 Order Number
 NN17 3DU

Laboratory Reference		SOIL633956	SOIL633957	SOIL633958	SOIL633959	SOIL633960	SOIL633961		
Sample Reference		TWEEN 122	TWEEN 153	TWEEN 181	TWEEN 195	TWEEN 209	TWEEN 334		
Determinand	Unit	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL		
Coarse Sand 2.00-0.63mm	% w/w	0	0	2	0	1	1		
Medium Sand 0.63-0.212mm	% w/w	10	34	2	31	40	50		
Fine Sand 0.212-0.063mm	% w/w	22	39	2	43	32	39		
Silt 0.063-0.002mm	% w/w	27	11	55	12	12	3		
Clay <0.002mm	% w/w	41	16	39	14	15	7		
Textural Class **		С	mSL	ZC	mSL	mSL	mS		

Notes

Analysis Notes The sample submitted was of adequate size to complete all analysis requested.

The results as reported relate only to the item(s) submitted for testing.

The results are presented on a dry matter basis unless otherwise stipulated.

Document Control This test report shall not be reproduced, except in full, without the written approval of the laboratory.

** Please see the attached document for the definition of textural classes.

Reported by Myles Nicholson

Natural Resource Management, a trading division of Cawood Scientific Ltd.

Coopers Bridge, Braziers Lane, Bracknell, Berkshire, RG42 6NS

Tel: 01344 886338 Fax: 01344 890972

email: enquiries@nrm.uk.com

Technical Information

ADAS (UK) Textural Class Abbreviations

The texture classes are denoted by the following abbreviations:

Sandy clay	Silty clay	Clay	Silt clay loam	Clay loam	Sandy clay loam	Silt loam	Sandy Silt loam	Sandy loam	Loamy sand	Sand	Class
SC	ZC	С	ZCL	CL	SCL	ZL	SZL	SL	LS	S	Code

of sand fraction may be indicated by the use of prefixes, thus:

vf Very Fine (more than 2/3's of sand less than 0.106 mm) For the sand, loamy sand, sandy loam and sandy silt loam classes the predominant size

- Fine (more than 2/3's of sand less than 0.212 mm) Coarse (more than 1/3 of sand greater than 0.6 mm)
- C
- Medium (less than 2/3's fine sand and less than 1/3 coarse sand).

indicated as follows: The subdivisions of clay loam and silty clay loam classes according to clay content are

- medium (less than 27% clay) heavy (27-35% clay)

Organic soils i.e. those with an organic matter greater than 10% will be preceded with a letter O.

letter P Peaty soils i.e. those with an organic matter greater than 20% will be preceded with a

				ANALYTIC	AL REPORT					
Report Number Date Received Date Reported Project Reference Order Number	83731-23 11-AUG-2023 17-AUG-2023 SOIL PEGASUS			AMET PROPER HENWICK BAR BULWICK CORBY NORTHANTS NN17 3DU						
Laboratory Reference		SOIL641175	SOIL641176	SOIL641177						
Sample Reference		TWEEN 255	TWEEN 293	TWEEN 356						
Determinand	Unit	SOIL	SOIL	SOIL						
Coarse Sand 2.00-0.63mm	% w/w	1	0	1						
Medium Sand 0.63-0.212mm	% w/w	1	2	44						
Fine Sand 0.212-0.063mm % w/v		1	2	25						
Silt 0.063-0.002mm % w/s		35	51	11						
Clay <0.002mm	% w/w	62	45	19					 	
Textural Class **		С	ZC	SCL						
Notes										
Analysis Notes Document Control	The sample submitte The results as report The results are prese This test report sha	ed relate only to ented on a dry m	the item(s) submatter basis unles	mitted for testing. ss otherwise stip	lated.	proval of the	laboratory.			
** Please see the attached document for the definition of textural classes. ** Please see the attached document for the definition of textural classes. ** Please see the attached document for the definition of textural classes. ** Please see the attached document for the definition of textural classes. ** Please see the attached document for the definition of textural classes. ** Please see the attached document for the definition of textural classes. ** Please see the attached document for the definition of textural classes. ** Please see the attached document for the definition of textural classes. ** Please see the attached document for the definition of textural classes. ** Please see the attached document for the definition of textural classes. ** Please see the attached document for the definition of textural classes. ** Please see the attached document for the definition of textural classes. ** Please see the attached document for the definition of textural classes. ** Please see the attached document for the definition of textural classes. ** Please see the attached document for the definition of textural classes. ** Please see the attached document for the definition of textural classes. ** Please see the attached document for the definition of textural classes. ** Please see the attached document for the definition of textural classes. ** Please see the attached document for the definition of textural classes. ** Please see the attached document for the definition of textural classes. ** Please see the attached document for the definition of textural classes. ** Please see the attached document for the definition of textural classes. ** Please see the attached document for the definition of textural classes. ** Please see the attached document for the definition of textural classes. ** Please see the attached document for the definition of textural classes. ** Please see the attached document for the definition of textural classes. ** Please see the attached document for the										

Technical Information

ADAS (UK) Textural Class Abbreviations

The texture classes are denoted by the following abbreviations:

Sandy clay	Silty clay	Clay	Silt clay loam	Clay loam	Sandy clay loam	Silt loam	Sandy Silt loam	Sandy loam	Loamy sand	Sand	Class
SC	ZC	С	ZCL	CL	SCL	ZL	SZL	SL	LS	S	Code

of sand fraction may be indicated by the use of prefixes, thus:

vf Very Fine (more than 2/3's of sand less than 0.106 mm) For the sand, loamy sand, sandy loam and sandy silt loam classes the predominant size

- Fine (more than 2/3's of sand less than 0.212 mm) Coarse (more than 1/3 of sand greater than 0.6 mm)
- C
- Medium (less than 2/3's fine sand and less than 1/3 coarse sand).

indicated as follows: The subdivisions of clay loam and silty clay loam classes according to clay content are

- medium (less than 27% clay) heavy (27-35% clay)

Organic soils i.e. those with an organic matter greater than 10% will be preceded with a letter O.

letter P Peaty soils i.e. those with an organic matter greater than 20% will be preceded with a

ANALYTICAL REPORT

Report Number	77374-23	W250	AMET PROPERTY
Date Received	26-JUN-2023		HENWICK BARN
Date Reported	14-JUL-2023		BULWICK
Project	SOIL		CORBY

Reference PEGASUS NORTHANTS
Order Number NN17 3DU

Laboratory Reference		SOIL633968	SOIL633969	SOIL633970	SOIL633971			
Sample Reference	TWEEN 360	TWEEN 369	TWEEN 375	TWEEN 380				
Determinand	Unit	SOIL	SOIL	SOIL	SOIL			
Coarse Sand 2.00-0.63mm	% w/w	1	0	0	0			
Medium Sand 0.63-0.212mm	% w/w	2	66	45	32			
Fine Sand 0.212-0.063mm	% w/w	3	25	32	46			
Silt 0.063-0.002mm	% w/w	31	3	10	9			
Clay <0.002mm	% w/w	63	6	13	13			
Textural Class **		С	mS	mSL	mSL			

Notes

Analysis Notes The sample submitted was of adequate size to complete all analysis requested.

The results as reported relate only to the item(s) submitted for testing.

The results are presented on a dry matter basis unless otherwise stipulated.

Document Control This test report shall not be reproduced, except in full, without the written approval of the laboratory.

** Please see the attached document for the definition of textural classes.

Reported by Myles Nicholson

Natural Resource Management, a trading division of Cawood Scientific Ltd.

Coopers Bridge, Braziers Lane, Bracknell, Berkshire, RG42 6NS

Tel: 01344 886338 Fax: 01344 890972

email: enquiries@nrm.uk.com

Technical Information

ADAS (UK) Textural Class Abbreviations

The texture classes are denoted by the following abbreviations:

Sandy clay	Silty clay	Clay	Silt clay loam	Clay loam	Sandy clay loam	Silt loam	Sandy Silt loam	Sandy loam	Loamy sand	Sand	Class
SC	ZC	С	ZCL	CL	SCL	ZL	SZL	SL	LS	S	Code

of sand fraction may be indicated by the use of prefixes, thus:

vf Very Fine (more than 2/3's of sand less than 0.106 mm) For the sand, loamy sand, sandy loam and sandy silt loam classes the predominant size

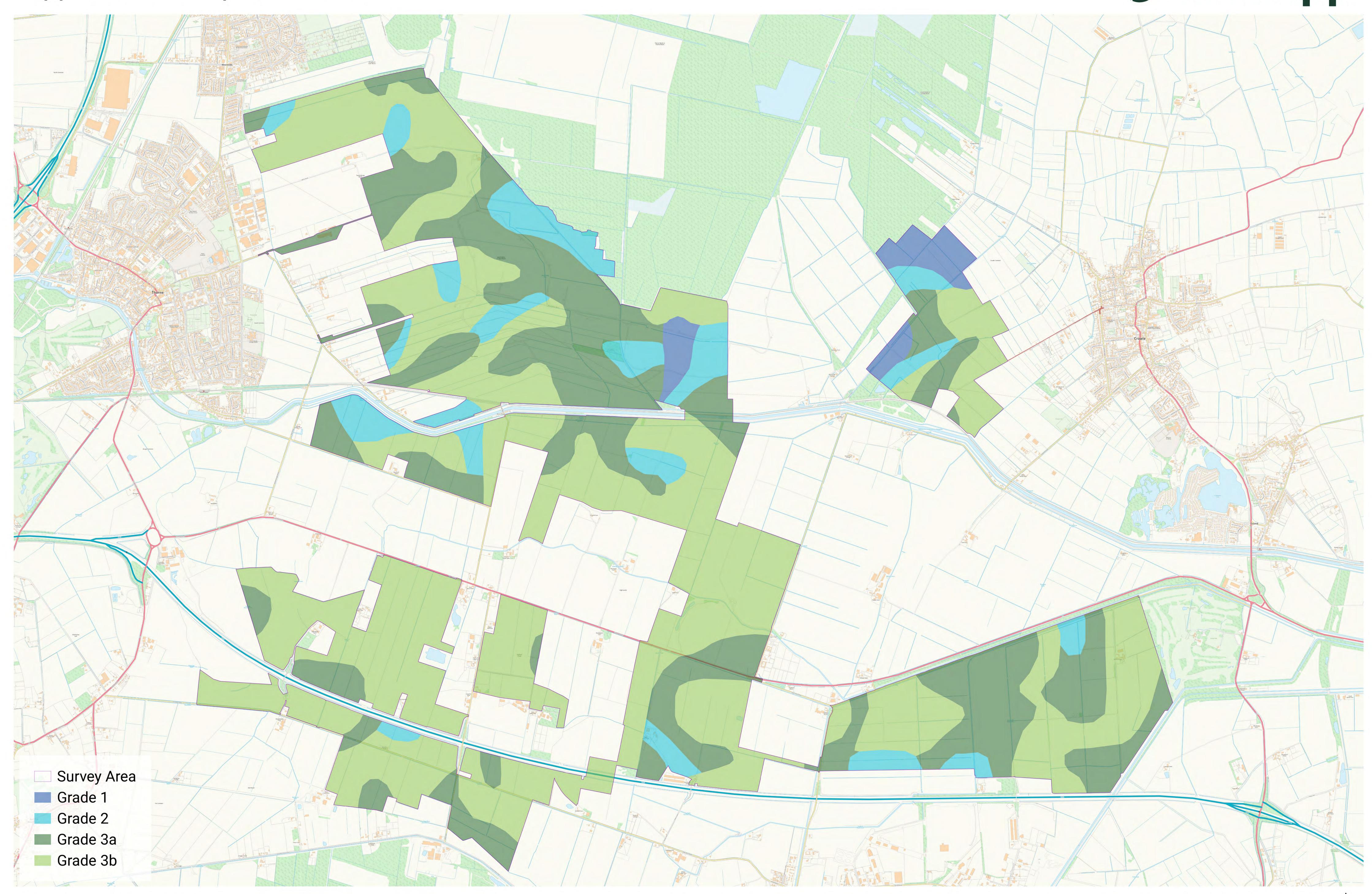
- Fine (more than 2/3's of sand less than 0.212 mm) Coarse (more than 1/3 of sand greater than 0.6 mm)
- C
- Medium (less than 2/3's fine sand and less than 1/3 coarse sand).

indicated as follows: The subdivisions of clay loam and silty clay loam classes according to clay content are

- medium (less than 27% clay) heavy (27-35% clay)

Organic soils i.e. those with an organic matter greater than 10% will be preceded with a letter O.

letter P Peaty soils i.e. those with an organic matter greater than 20% will be preceded with a



APPENDIX 5 - DESCRIPTION OF ALC GRADES

- Grade 1 excellent quality agricultural land Land with no or very minor limitations to agricultural use. A very wide range of agricultural and horticultural crops can be grown and commonly includes top fruit, soft fruit, salad crops and winter harvested vegetables. Yields are high and less variable than on land of lower quality.
- Grade 2 very good quality agricultural land Land with minor limitations which affect crop yield, cultivations or harvesting. A wide range of agricultural and horticultural crops can usually be grown but on some land in the grade there may be reduced flexibility due to difficulties with the production of the more demanding crops such as winter harvested vegetables and arable root crops. The level of yield is generally high but may be lower or more variable than Grade 1.
- Grade 3 good to moderate quality agricultural land Land with moderate limitations which affect the choice of crops, timing and type of cultivation, harvesting or the level of yield. Where more demanding crops are grown yields are generally lower or more variable than on land in Grades 1 and 2.
- Subgrade 3a good quality agricultural land Land capable of consistently producing moderate to high yields of a narrow range of arable crops, especially cereals, or moderate yields of a wide range of crops including cereals, grass, oilseed rape, potatoes, sugar beet and the less demanding horticultural crops.
- Subgrade 3b moderate quality agricultural land Land capable of producing moderate yields of a narrow range of crops, principally cereals and grass or lower yields of a wider range of crops or high yields of grass which can be grazed or harvested over most of the year.
- Grade 4 poor quality agricultural land Land with severe limitations which significantly restrict the range of crops and/or level of yields. It is mainly suited to grass with occasional arable crops (e.g. cereals and forage crops) the yields of which are variable. In moist climates, yields of grass may be moderate to high but there may be difficulties in utilisation. The grade also includes very droughty arable land.
- Grade 5 very poor-quality agricultural land Land with very severe limitations which restrict use to permanent pasture or rough grazing, except for occasional pioneer forage crops.

Appendix 6 - Map of ALC Grade

